当输入接地时,测得的A D8099噪声贡献视为测量系统的噪底,然后测量包括A D A 4 9 5 0 -1的总输出噪声,A D A 4 9 5 0 -1 的噪声即为RSS(和的平方根)方法,用总噪声减去A D8099的噪声贡献。如式2所示;其中Vn1为A DA 4 9 5 0 -1的输出噪声, Vn2为AD8099的输出噪声。
总输出噪声为:
为了精确测量系统噪声,还采用了其它几项技术:
测量A D8099的噪声时,其输入通过SMA连接器接地,SMA连接器的芯线对连接器的接地引脚短路。此外,SMA 连接器焊在一起,直接在连接器上形成共用接地连接,而不是通过电路板。
D8099和A D A 4 9 5 0 -1使用模拟控制电源。与数字控制电源相比,模拟控制电源能更好地抑制60Hz电力线耦合的噪声和谐波。
所有邻近仪器均关闭,除非测量需要使用。这可以最大程度减少由这些仪器控制器数字电路而产生的振荡,这些振荡可以通过 空气耦合至放大器。出于同样的原因,使用4英尺电缆将电路板连接到频谱分析仪,频谱分析仪会拾取显示器的刷新频率,从 而影响AD8099的输出。
为使A D8099的噪声贡献较小,使用低值电阻 (RF = 2 5 0 Ω; RG= 25 Ω) 配置其增益。较低的值会引起A D8099 振荡。当用短电缆将A D A 4 9 5 0 -1与A D8099 相连时,在250 M Hz时可观察到振荡。当使用1英尺电缆时,振荡消失。
AD8099本身的噪声贡献非常小:
其中vn为输入电压噪声,ni+和ni-为AD8099的输入电流噪声。
因为需要一个大反馈电阻来放大该噪声,但内部反馈电阻值无法改变,所以不可能测量A DA 4 9 5 0 -1的电流噪声。
图2所示的是测量结果,测量100kHz及以下的噪声使用的是Stanford Research S ys tems S R785,测量100 k H z 以上的噪声使用的是A gilen t E4440 PSA频谱分析仪。