找回密码
 注册
搜索
查看: 786|回复: 0

[讨论] [转帖]RF产品设计过程中降低信号耦合的PCB布线技巧

[复制链接]
发表于 2006-3-31 14:44:00 | 显示全部楼层 |阅读模式
新一轮蓝牙设备、无绳电话和蜂窝电话需求高潮正促使中国电子工程师越来越关注RF
电路设计技巧。RF电路板的设计是最令设计工程师感到头疼的部分,如想一次获得成功,
仔细规划和注重细节是必须加以高度重视的两大关键设计规则。
射频(RF)电路板设计由于在理论上还有很多不确定性,因此常被形容为一种“黑色艺术”
,但这个观点只有部分正确,RF电路板设计也有许多可以遵循的准则和不应该被忽视的法
则。不过,在实际设计时,真正实用的技巧是当这些准则和法则因各种设计约束而无法准
确地实施时如何对它们进行折衷处理。
当然,有许多重要的RF设计课题值得讨论,包括阻抗和阻抗匹配、绝缘层材料和层叠板以
及波长和驻波,不过,本文将集中探讨与RF电路板分区设计有关的各种问题。
今天的蜂窝电话设计以各种方式将所有的东西集成在一起,这对RF电路板设计来说很不利
。现在业界竞争非常激烈,人人都在找办法用最小的尺寸和最小的成本集成最多的功能。
模拟、数字和RF电路都紧密地挤在一起,用来隔开各自问题区域的空间非常小,而且考虑
到成本因素,电路板层数往往又减到最小。令人感到不可思议的是,多用途芯片可将多种
功能集成在一个非常小的裸片上,而且连接外界的引脚之间排列得又非常紧密,因此RF、
IF、模拟和数字信号非常靠近,但它们通常在电气上是不相干的。电源分配可能对设计者
来说是一个噩梦,为了延长电池寿命,电路的不同部分是根据需要而分时工作的,并由软
件来控制转换。这意味着你可能需要为你的蜂窝电话提供5到6种工作电源。

RF布局概念
在设计RF布局时,有几个总的原则必须优先加以满足:
尽可能地把高功率RF放大器(HPA)和低噪音放大器(LNA)隔离开来,简单地说,就是让高功
率RF发射电路远离低功率RF接收电路。如果你的PCB板上有很多物理空间,那么你可以很容
易地做到这一点,但通常元器件很多,PCB空间较小,因而这通常是不可能的。你可以把他
们放在PCB板的两面,或者让它们交替工作,而不是同时工作。高功率电路有时还可包括R
F缓冲器和压控制振荡器(VCO)。
确保PCB板上高功率区至少有一整块地,最好上面没有过孔,当然,铜皮越多越好。稍后,
我们将讨论如何根据需要打破这个设计原则,以及如何避免由此而可能引起的问题。
芯片和电源去耦同样也极为重要,稍后将讨论实现这个原则的几种方法。
RF输出通常需要远离RF输入,稍后我们将进行详细讨论。
敏感的模拟信号应该尽可能远离高速数字信号和RF信号。

如何进行分区?
设计分区可以分解为物理分区和电气分区。物理分区主要涉及元器件布局、朝向和屏蔽等
问题;电气分区可以继续分解为电源分配、RF走线、敏感电路和信号以及接地等的分区。

首先我们讨论物理分区问题。元器件布局是实现一个优秀RF设计的关键,最有效的技术是
首先固定位于RF路径上的元器件,并调整其朝向以将RF路径的长度减到最小,使输入远离
输出,并尽可能远地分离高功率电路和低功率电路。
最有效的电路板堆叠方法是将主接地面(主地)安排在表层下的第二层,并尽可能将RF线走
在表层上。将RF路径上的过孔尺寸减到最小不仅可以减少路径电感,而且还可以减少主地
上的虚焊点,并可减少RF能量泄漏到层叠板内其他区域的机会。
在物理空间上,像多级放大器这样的线性电路通常足以将多个RF区之间相互隔离开来,但
是双工器、混频器和中频放大器/混频器总是有多个RF/IF信号相互干扰,因此必须小心地
将这一影响减到最小。RF与IF走线应尽可能走十字交叉,并尽可能在它们之间隔一块地。
正确的RF路径对整块PCB板的性能而言非常重要,这也就是为什么元器件布局通常在蜂窝电
话PCB板设计中占大部分时间的原因。
在蜂窝电话PCB板上,通常可以将低噪音放大器电路放在PCB板的某一面,而高功率放大器
放在另一面,并最终通过双工器把它们在同一面上连接到RF端和基带处理器端的天线上。
需要一些技巧来确保直通过孔不会把RF能量从板的一面传递到另一面,常用的技术是在两
面都使用盲孔。可以通过将直通过孔安排在PCB板两面都不受RF干扰的区域来将直通过孔的
不利影响减到最小。
有时不太可能在多个电路块之间保证足够的隔离,在这种情况下就必须考虑采用金属屏蔽
罩将射频能量屏蔽在RF区域内,但金属屏蔽罩也存在问题,例如:自身成本和装配成本都
很贵;
外形不规则的金属屏蔽罩在制造时很难保证高精度,长方形或正方形金属屏蔽罩又使元器
件布局受到一些限制;金属屏蔽罩不利于元器件更换和故障定位;由于金属屏蔽罩必须焊
在地上,必须与元器件保持一个适当距离,因此需要占用宝贵的PCB板空间。
尽可能保证屏蔽罩的完整非常重要,进入金属屏蔽罩的数字信号线应该尽可能走内层,而
且最好走线层的下面一层PCB是地层。RF信号线可以从金属屏蔽罩底部的小缺口和地缺口处
的布线层上走出去,不过缺口处周围要尽可能地多布一些地,不同层上的地可通过多个过
孔连在一起。
尽管有以上的问题,但是金属屏蔽罩非常有效,而且常常还是隔离关键电路的唯一解决方
案。
此外,恰当和有效的芯片电源去耦也非常重要。许多集成了线性线路的RF芯片对电源的噪
音非常敏感,通常每个芯片都需要采用高达四个电容和一个隔离电感来确保滤除所有的电
源噪音(见图1)。

此主题相关图片如下:
  
最小电容值通常取决于其自谐振频率和低引脚电感,C4的值就是据此选择的。C3和C2的值
由于其自身引脚电感的关系而相对较大一些,从而RF去耦效果要差一些,不过它们较适合
于滤除较低频率的噪声信号。电感L1使RF信号无法从电源线耦合到芯片中。记住:所有的
走线都是一条潜在的既可接收也可发射RF信号的天线,另外将感应的射频信号与关键线路
隔离开也很必要。
这些去耦元件的物理位置通常也很关键,图2表示了一种典型的布局方法。这几个重要元件
的布局原则是:C4要尽可能靠近IC引脚并接地,C3必须最靠近C4,C2必须最靠近C3,而且
IC引脚与C4的连接走线要尽可能短,这几个元件的接地端(尤其是C4)通常应当通过下一地
层与芯片的接地引脚相连。将元件与地层相连的过孔应该尽可能靠近PCB板上元件焊盘,最
好是使用打在焊盘上的盲孔以将连接线电感减到最小,电感应该靠近C1。
一块集成电路或放大器常常带有一个开漏极输出,因此需要一个上拉电感来提供一个高阻
抗RF负载和一个低阻抗直流电源,同样的原则也适用于对这一电感端的电源进行去耦。有
些芯片需要多个电源才能工作,因此你可能需要两到三套电容和电感来分别对它们进行去
耦处理,如果该芯片周围没有足够空间的话,那么可能会遇到一些麻烦。
记住电感极少并行靠在一起,因为这将形成一个空芯变压器并相互感应产生干扰信号,因
此它们之间的距离至少要相当于其中一个器件的高度,或者成直角排列以将其互感减到最
小。
电气分区原则大体上与物理分区相同,但还包含一些其它因素。现代蜂窝电话的某些部分
采用不同工作电压,并借助软件对其进行控制,以延长电池工作寿命。这意味着蜂窝电话
需要运行多种电源,而这给隔离带来了更多的问题。电源通常从连接器引入,并立即进行
去耦处理以滤除任何来自线路板外部的噪声,然后再经过一组开关或稳压器之后对其进行
分配。
蜂窝电话里大多数电路的直流电流都相当小,因此走线宽度通常不是问题,不过,必须为
高功率放大器的电源单独走一条尽可能宽的大电流线,以将传输压降减到最低。为了避免
太多电流损耗,需要采用多个过孔来将电流从某一层传递到另一层。此外,如果不能在高
功率放大器的电源引脚端对它进行充分的去耦,那么高功率噪声将会辐射到整块板上,并
带来各种各样的问题。高功率放大器的接地相当关键,并经常需要为其设计一个金属屏蔽
罩。
在大多数情况下,同样关键的是确保RF输出远离RF输入。这也适用于放大器、缓冲器和滤
波器。在最坏情况下,如果放大器和缓冲器的输出以适当的相位和振幅反馈到它们的输入
端,那么它们就有可能产生自激振荡。在最好情况下,它们将能在任何温度和电压条件下
稳定地工作。实际上,它们可能会变得不稳定,并将噪音和互调信号添加到RF信号上。
如果射频信号线不得不从滤波器的输入端绕回输出端,这可能会严重损害滤波器的带通特
性。为了使输入和输出得到良好的隔离,首先必须在滤波器周围布一圈地,其次滤波器下
层区域也要布一块地,并与围绕滤波器的主地连接起来。把需要穿过滤波器的信号线尽可
能远离滤波器引脚也是个好方法。此外,整块板上各个地方的接地都要十分小心,否则你
可能会在不知不觉之中引入一条你不希望发生的耦合通道。图3详细说明了这一接地办法。


有时可以选择走单端或平衡RF信号线,有关交叉干扰和EMC/EMI的原则在这里同样适用。平
衡RF信号线如果走线正确的话,可以减少噪声和交叉干扰,但是它们的阻抗通常比较高,
而且要保持一个合理的线宽以得到一个匹配信号源、走线和负载的阻抗,实际布线可能会
有一些困难。
缓冲器可以用来提高隔离效果,因为它可把同一个信号分为两个部分,并用于驱动不同的
电路,特别是本振可能需要缓冲器来驱动多个混频器。当混频器在RF频率处到达共模隔离
状态时,它将无法正常工作。缓冲器可以很好地隔离不同频率处的阻抗变化,从而电路之
间不会相互干扰。
缓冲器对设计的帮助很大,它们可以紧跟在需要被驱动电路的后面,从而使高功率输出走
线非常短,由于缓冲器的输入信号电平比较低,因此它们不易对板上的其它电路造成干扰

还有许多非常敏感的信号和控制线需要特别注意,但它们超出了本文探讨的范围,因此本
文仅略作论述,不再进行详细说明。
压控振荡器(VCO)可将变化的电压转换为变化的频率,这一特性被用于高速频道切换,但它
们同样也将控制电压上的微量噪声转换为微小的频率变化,而这就给RF信号增加了噪声。
总的来说,在这一级以后你再也没有办法从RF输出信号中将噪声去掉。那么困难在哪里呢
?首先,控制线的期望频宽范围可能从DC直到2MHz,而通过滤波来去掉这么宽频带的噪声
几乎是不可能的;其次,VCO控制线通常是一个控制频率的反馈回路的一部分,它在很多地
方都有可能引入噪声,因此必须非常小心处理VCO控制线。
要确保RF走线下层的地是实心的,而且所有的元器件都牢固地连到主地上,并与其它可能
带来噪声的走线隔离开来。此外,要确保VCO的电源已得到充分去耦,由于VCO的RF输出往
往是一个相对较高的电平,VCO输出信号很容易干扰其它电路,因此必须对VCO加以特别注
意。事实上,VCO往往布放在RF区域的末端,有时它还需要一个金属屏蔽罩。
谐振电路(一个用于发射机,另一个用于接收机)与VCO有关,但也有它自己的特点。简单地
讲,谐振电路是一个带有容性二极管的并行谐振电路,它有助于设置VCO工作频率和将语音
或数据调制到RF信号上。
所有VCO的设计原则同样适用于谐振电路。由于谐振电路含有数量相当多的元器件、板上分
布区域较宽以及通常运行在一个很高的RF频率下,因此谐振电路通常对噪声非常敏感。信
号通常排列在芯片的相邻脚上,但这些信号引脚又需要与相对较大的电感和电容配合才能
工作,这反过来要求这些电感和电容的位置必须靠得很近,并连回到一个对噪声很敏感的
控制环路上。要做到这点是不容易的。
自动增益控制(AGC)放大器同样是一个容易出问题的地方,不管是发射还是接收电路都会有
AGC放大器。AGC放大器通常能有效地滤掉噪声,不过由于蜂窝电话具备处理发射和接收信
号强度快速变化的能力,因此要求AGC电路有一个相当宽的带宽,而这使某些关键电路上的
AGC放大器很容易引入噪声。
设计AGC线路必须遵守良好的模拟电路设计技术,而这跟很短的运放输入引脚和很短的反馈
路径有关,这两处都必须远离RF、IF或高速数字信号走线。同样,良好的接地也必不可少
,而且芯片的电源必须得到良好的去耦。如果必须要在输入或输出端走一根长线,那么最
好是在输出端,通常输出端的阻抗要低得多,而且也不容易感应噪声。通常信号电平越高
,就越容易把噪声引入到其它电路。
在所有PCB设计中,尽可能将数字电路远离模拟电路是一条总的原则,它同样也适用于RF  
-PCB设计。公共模拟地和用于屏蔽和隔开信号线的地通常是同等重要的,问题在于如果没
有预见和事先仔细的计划,每次你能在这方面所做的事都很少。因此在设计早期阶段,仔
细的计划、考虑周全的元器件布局和彻底的布局评估都非常重要,由于疏忽而引起的设计
更改将可能导致一个即将完成的设计又必须推倒重来。这一因疏忽而导致的严重后果,无
论如何对你的个人事业发展来说不是一件好事。
同样应使RF线路远离模拟线路和一些很关键的数字信号,所有的RF走线、焊盘和元件周围
应尽可能多填接地铜皮,并尽可能与主地相连。类似面包板的微型过孔构造板在RF线路开
发阶段很有用,如果你选用了构造板,那么你毋须花费任何开销就可随意使用很多过孔,
否则在普通PCB板上钻孔将会增加开发成本,而这在大批量生产时会增加成本。
如果RF走线必须穿过信号线,那么尽量在它们之间沿着RF走线布一层与主地相连的地。如
果不可能的话,一定要保证它们是十字交叉的,这可将容性耦合减到最小,同时尽可能在
每根RF走线周围多布一些地,并把它们连到主地。此外,将并行RF走线之间的距离减到最
小可以将感性耦合减到最小。
一个实心的整块接地面直接放在表层下第一层时,隔离效果最好,尽管小心一点设计时其
它的做法也管用。我曾试过把接地面分成几块来隔离模拟、数字和RF线路,但我从未对结
果感到满意过,因为最终总是有一些高速信号线要穿过这些分开的地,这不是一件好事。

在PCB板的每一层,应布上尽可能多的地,并把它们连到主地面。尽可能把走线靠在一起以
增加内部信号层和电源分配层的地块数量,并适当调整走线以便你能将地连接过孔布置到
表层上的隔离地块。应当避免在PCB各层上生成游离地,因为它们会像一个小天线那样拾取
或注入噪音。在大多数情况下,如果你不能把它们连到主地,那么你最好把它们去掉。

本文小结
在拿到一张工程更改单(ECO)时,要冷静,不要轻易消除你所有辛辛苦苦才完成的工作。一
张ECO很轻易使你的工作陷入混乱,不管需要做的修改是多么的微小。当你必须在某个时间
段里完成一份工作时,你很容易就会忘记一些关键的东西,更不用说要作出更改了。
不论是不是“黑色艺术”,遵守一些基本的RF设计规则和留意一些优秀的设计实例将可帮
助你完成RF设计工作。成功的RF设计必须仔细注意整个设计过程中每个步骤及每个细节才
有可能实现,这意味着必须在设计开始阶段就要进行彻底的、仔细的规划,并对每个设计
步骤的工作进展进行全面持续地评估。
高级模式
B Color Image Link Quote Code Smilies

本版积分规则

Archiver|手机版|小黑屋|52RD我爱研发网 ( 沪ICP备2022007804号-2 )

GMT+8, 2024-12-23 14:22 , Processed in 0.044600 second(s), 16 queries , Gzip On.

Powered by Discuz! X3.5

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表