|
现在用SiGe工艺做射频IC还是蛮多的,发2本关于SiGe的书
一本是讲SiGeHBT基础的,一本是讲SiGe Bicmos的
2本是打包在一起的
第一本
<SiGe Heterojunction Bipolar
Transistors>
作者
Peter Ashburn
Contents
Preface
Physical Constants and Properties of Silicon and
Silicon-Germanium xvii
List of Symbols xix
1 Introduction 1
1.1 Evolution of Silicon Bipolar Technology 1
1.2 Evolution of Silicon-Germanium HBT Technology 3
1.3 Operating Principles of the Bipolar Transistor 5
References 10
2 Basic Bipolar Transistor Theory 13
2.1 Introduction 13
2.2 Components of Base Current 13
2.3 Fundamental Equations 16
2.3.1 Assumptions 17
2.4 Base Current 19
2.4.1 Base Current in Shallow Emitters 20
2.4.2 Base Current in Deep Emitters 21
2.4.3 Recombination Current in the Neutral Base 22
2.5 Collector Current 23
2.6 Current Gain 24
2.7 Gummel Numbers 25
3 Heavy Doping Effects 27
3.1 Introduction 27
3.2 Majority and Minority Carrier Mobility 28
viii CONTENTS
3.3 Bandgap Narrowing 32
3.4 Minority Carrier Lifetime 36
3.5 Gain and Heavy Doping Effects 39
3.6 Non-uniform Doping Profiles 40
References 42
4 Second-Order Effects 45
4.1 Introduction 45
4.2 Low Current Gain 46
4.2.1 Recombination via Deep Levels 46
4.2.2 Recombination Current in the Forward
Biased Emitter/Base Depletion Region 49
4.2.3 Generation Current in a Reverse Biased pn
Junction 52
4.2.4 Origins of Deep Levels in Bipolar
Transistors 53
4.3 High Current Gain 56
4.4 Basewidth Modulation 58
4.5 Series Resistance 59
4.6 Junction Breakdown 61
4.6.1 Punch-through 62
4.6.2 Zener Breakdown 63
4.6.3 Avalanche Breakdown 64
4.6.4 Junction Breakdown in Practice 65
4.6.5 Common Base and Common Emitter
Breakdown Voltages 65
4.6.6 Trade-off between Gain and BVCEO 68
References 69
5 High-frequency Performance 71
5.1 Introduction 71
5.2 Forward Transit Time τF 72
5.2.1 Components of τF 72
5.2.2 Base Transit Time 72
5.2.3 Emitter Delay 74
5.2.4 Collector/Base Depletion Region Transit
Time 75
5.2.5 Emitter/Base Depletion Region Delay 76
5.3 Cut-off Frequency fT 76
5.4 Maximum Oscillation Frequency fmax 79
5.5 Kirk Effect 80
CONTENTS ix
5.6 Base, Collector and Emitter Resistance 84
5.6.1 Base Resistance 84
5.6.2 Collector Resistance 86
5.7 Emitter/Base and Collector/Base Depletion
Capacitance 87
5.8 Quasi-saturation 88
5.9 Current Crowding 90
References 91
6 Polysilicon Emitters 93
6.1 Introduction 93
6.2 Basic Fabrication and Operation of Polysilicon
Emitters 94
6.3 Diffusion in Polysilicon Emitters 96
6.4 Influence of the Polysilicon/Silicon Interface 100
6.5 Base Current in Polysilicon Emitters 101
6.6 Effective Surface Recombination Velocity 104
6.7 Emitter Resistance 107
6.8 Design of Practical Polysilicon Emitters 108
6.8.1 Break-up of the Interfacial Oxide Layer and
Epitaxial Regrowth 108
6.8.2 Epitaxially Regrown Emitters 111
6.8.3 Trade-off between Emitter Resistance and
Current Gain in Polysilicon Emitters 112
6.8.4 Emitter Plug Effect and in situ Doped
Polysilicon Emitters 115
6.9 pnp Polysilicon Emitters 116
References 118
7 Properties and Growth of Silicon-Germanium 121
7.1 Introduction 121
7.2 Materials Properties of Silicon-Germanium 122
7.2.1 Pseudomorphic Silicon-Germanium 122
7.2.2 Critical Thickness 123
7.2.3 Band Structure of Silicon-Germanium 125
7.3 Physical Properties of Silicon-Germanium 127
7.3.1 Dielectric Constant 127
7.3.2 Density of States 127
7.3.3 Apparent Bandgap Narrowing 128
7.3.4 Minority Carrier Hole Mobility 129
7.4 Basic Epitaxy Theory 130
x CONTENTS
7.4.1 Boundary Layer Model 133
7.4.2 Growth Modes 135
7.5 Low-Temperature Epitaxy 136
7.5.1 In situ Hydrogen Bake 136
7.5.2 Hydrogen Passivation 137
7.5.3 Ultra-clean Epitaxy Systems 138
7.6 Comparison of Silicon and Silicon-Germanium
Epitaxy 139
7.7 Selective Epitaxy 141
7.7.1 Faceting and Loading Effects 143
References 145
8 Silicon-Germanium Heterojunction Bipolar Transistors 149
8.1 Introduction 149
8.2 Bandgap Engineering 150
8.3 Collector Current, Base Current and Gain
Enhancement 152
8.4 Cut-off Frequency 153
8.5 Device Design Trade-offs in a SiGe HBT 154
8.6 Graded Germanium Profiles 155
8.6.1 Design Equations for a Graded Germanium
Profile 156
8.7 Boron Diffusion in SiGe HBTs 158
8.7.1 Parasitic Energy Barriers 158
8.7.2 Factors Influencing Boron Diffusion in Si
and SiGe 160
8.7.3 SiGe:C-Reduction of Boron Diffusion by
Carbon Doping 162
8.8 Strain Relaxation and Strain Compensated
Si1?x?yGexCy 163
References 164
9 Silicon Bipolar Technology 167
9.1 Introduction 167
9.2 Buried Layer and Epitaxy 169
9.3 Isolation 172
9.4 Selective Implanted Collector 176
9.5 Double-polysilicon, Self-aligned Bipolar Process 178
9.6 Single-polysilicon Bipolar Process 183
9.7 BiCMOS Process 184
9.8 Complementary Bipolar Process 186
References 187
CONTENTS xi
10 Silicon-Germanium Heterojunction Bipolar Technology 191
10.1 Introduction 191
10.2 Differential Epitaxy Silicon-Germanium HBT Process 193
10.2.1 Polysilicon Nucleation Layer 195
10.2.2 Self-aligned Emitter for the Differential
Epitaxy HBT 196
10.3 Selective Epitaxy Silicon-Germanium HBT Process 198
10.4 Silicon-Germanium-Carbon HBT Process 200
10.5 Silicon-Germanium HBT Process Using Germanium
Implantation 201
10.6 Radio Frequency Silicon-Germanium BiCMOS
Process 203
References 208
11 Compact Models of Bipolar Transistors 211
11.1 Introduction 211
11.2 Ebers-Moll Model 212
11.3 Non-linear Hybrid-π Model 214
11.4 Modelling the Low-current Gain 216
11.5 AC Non-linear Hybrid-π Model 218
11.6 Small-signal Hybrid-π Model 220
11.7 Gummel-Poon Model 222
11.8 The SPICE Bipolar Transistor Model 225
11.8.1 Collector Current and Base Current 226
11.8.2 Forward Transit Time 226
11.8.3 Base Resistance 229
11.8.4 Collector Resistance 230
11.8.5 Emitter Resistance 231
11.8.6 Emitter, Collector and Substrate
Capacitances 232
11.8.7 Additional Parameters 233
11.9 Limitations of the SPICE Bipolar Transistor Model 233
11.10 VBIC Model 234
11.11 Mextram Model 236
References 238
12 Optimization of Silicon and Silicon-Germanium Bipolar
Technologies 239
12.1 Introduction 239
12.2 ECL and CML Propagation Delay Expressions 240
12.3 Calculation of Electrical Parameters 242
xii CONTENTS
12.4 Gate Delay Estimation 244
12.5 Optimization Procedure 246
12.6 Optimization of Silicon Bipolar Technology 246
12.7 Optimization of Silicon-Germanium HBT
Technology 251
References 255
Index 257
第二本
《SILICON GERMANIUM
Technology, Modeling,
and Design》
作者
RAMINDERPAL SINGH
DAVID L. HARAME
MODEST M. OPRYSKO
CONTENTS
Contributors ix
Foreword xiii
Preface xvii
Acknowledgments xxi
Acronyms xxiii
Introduction 1
A Historical Perspective at IBM 21
1 Technology Development 47
Overview 47
1.1 Active Devices 48
1.2 Technology Development: Advanced Passives and ESD Protection 58
1.3 Process Development 77
1.4 Technology Implications in SiGe Design 84
2 Modeling and Characterization 103
Overview 103
2.1 Predictive Modeling 104
2.2 Characterization 116
vii
2.3 Compact-Model Development: Active Devices 127
2.4 Compact-Model Development: Advanced Passives 148
3 Design Automation and Signal Integrity 163
Overview 163
3.1 Design Automation Overview 164
3.2 ESD: Best-Practice CAD Implementation 180
3.3 Interconnect Extraction and Modeling 194
3.4 Substrate Noise Isolation and Modeling 217
4 Leading-Edge Applications 233
Overview 233
4.1 Wired Communications: SONET Design 234
4.2 Wireless Design: A Direct Conversion Receiver IC for WCDMA 271
Mobile Systems
4.3 Wireless Design: Ericsson Power-Amplifier Design 296
4.4 Memory Design: A 32-Word by 32-Bit Three-Port Bipolar 304
Register File
Appendix. Summary of IBM Foundry Offerings 319
Index 335
About the Authors 338
【文件名】:0724@52RD_SiGe.part1.rar
【格 式】:rar
【大 小】:3857K
【简 介】:
【目 录】:
[UseMoney=1]
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?注册
×
|