|
没办法,没RDB了,有需要的或是RDB多的就下吧...谢谢
【文件名】:06820@52RD_Artech.House.Nonlinear.Microwave.And.RF.Circuits.2nd.Edition.rar
【格 式】:rar
【大 小】:3628K
【简 介】:
【目 录】:
Contents
Preface xix
Chapter 1 Introduction, Fundamental Concepts, and Definitions 1
1.1 Linearity and Nonlinearity 1
1.2 Frequency Generation 4
1.3 Nonlinear Phenomena 13
1.3.1 Harmonic Generation 13
1.3.2 Intermodulation Distortion 14
1.3.3 Saturation and Desensitization 14
1.3.4 Cross Modulation 15
1.3.5 AM-to-PM Conversion 15
1.3.6 Spurious Responses 16
1.3.7 Adjacent Channel Interference 16
1.4 Approaches to Analysis 17
1.4.1 Load Pull 17
1.4.2 Large-Signal Scattering Parameters 18
1.4.3 Time-Domain (Transient) Analysis 19
1.4.4 Frequency-Domain Methods 19
1.4.5 The Quasistatic Assumption 20
Nonlinear Microwave and RF Circuviii its
1.5 Power and Gain Definitions 21
1.6 Stability 26
Reference 27
Chapter 2 Solid-State Device Modeling for Quasistatic Analysis 29
2.1 Nonlinear Device Models 29
2.2 Nonlinear Lumped Circuit Elements and
Controlled Sources 31
2.2.1 The Substitution Theorem 33
2.2.2 Large-Signal Nonlinear Resistive Elements 34
2.2.3 Small-Signal Nonlinear Resistive Elements 35
2.2.4 Large-Signal Nonlinear Capacitance 38
2.2.5 Small-Signal Nonlinear Capacitance 39
2.2.6 Relationship Between I/V, Q/V and G/V, C/V
Expansions 41
2.2.7 Multiply Controlled Nonlinear Capacitors 43
2.2.8 Nonlinear Inductance 47
2.3 Numerical and Human Requirements for Device
Models 48
2.3.1 Continuous Derivatives in I/V or Q/V
Expressions 48
2.3.2 Accuracy of Derivatives 49
2.3.3 Range of Expressions 49
2.3.4 Transient-Analysis Models in Harmonic-
Balance Analysis 50
2.3.5 Matrix Conditioning 50
2.3.6 Limiting the Range of Control Voltages 51
2.3.7 Use of Polynomials 52
2.3.8 Loops of Control Voltages 53
2.3.9 Default Parameters 53
Contents ix
2.3.10 Error Trapping 54
2.3.11 Lucidity of Models and Parameters 55
2.3.12 Does Complexity Improve a Model? 55
2.4 Schottky-Barrier and Junction Diodes 56
2.4.1 Structure and Fabrication 57
2.4.2 The Schottky-Barrier Diode Model 58
2.4.3 Mixer Diodes 65
2.4.4 Schottky-Barrier Varactors 66
2.4.5 p+n Junction Varactors 68
2.4.6 Varactor Modeling 70
2.4.7 Step-Recovery Diodes 71
2.5 FET Devices 73
2.5.1 MESFET Operation 74
2.5.2 HEMT Operation 78
2.5.3 MOSFET Operation 79
2.5.4 MESFET Modeling 81
2.5.5 HEMT Modeling 86
2.5.6 MOSFET Modeling 88
2.5.7 FET Capacitances 90
2.6 Bipolar Devices 95
2.6.1 BJT Operation 96
2.6.2 HBT Operation 100
2.6.3 BJT Modeling 101
2.6.4 HBT Modeling 104
2.7 Thermal Modeling 104
2.8 Parameter Extraction 108
2.8.1 Diode Parameter Extraction 109
Nonlinear Microwave and RF Circux its
2.8.2 FET Parameter Extraction 111
2.8.3 Parameter Extraction for Bipolar Devices 115
2.8.4 Final Notes on Parameter Extraction 116
References 117
Chapter 3 Harmonic-Balance Analysis and Related Methods 119
3.1 Why Use Harmonic-Balance Analysis? 119
3.2 An Heuristic Introduction to
Harmonic-Balance Analysis 120
3.3 Single-Tone Harmonic-Balance Analysis 124
3.3.1 Circuit Partitioning 124
3.3.2 The Nonlinear Subcircuit 129
3.3.3 The Linear Subcircuit 135
3.3.4 Solution Algorithms 137
3.3.5 Newton Solution of the Harmonic-
Balance Equation 140
3.3.6 Selecting the Number of Harmonics
and Time Samples 149
3.3.7 Matrix Methods for Solving (3.37) 151
3.3.8 Norm Reduction 155
3.3.9 Optimizing Convergence and Efficiency 156
3.4 Large-Signal/Small-Signal Analysis Using
Conversion Matrices 164
3.4.1 Conversion Matrix Formulation 165
3.4.2 Applying Conversion Matrices to
Time-Varying Circuits 175
3.4.3 Nodal Formulation 185
3.5 Multitone Excitation and Intermodulation in Time-
Varying Circuits 187
Contents xi
3.6 Multitone Harmonic-Balance Analysis 198
3.6.1 Generalizing the Harmonic-Balance
Concept 198
3.6.2 Reformulation and Fourier Transformation 200
3.6.3 Discrete Fourier Transforms 201
3.6.4 Almost-Periodic Fourier Transform
(APFT) 203
3.6.5 Two-Dimensional FFT 204
3.6.6 Artificial Frequency Mapping 205
3.6.7 Frequency Sets 206
3.6.8 Determining the Jacobian 207
3.7 Modulated Waveforms and Envelope Analysis 209
3.7.1 Modulated Signals 209
3.7.2 Envelope Analysis 211
References 212
Chapter 4 Volterra-Series and Power-Series Analysis 215
4.1 Power-Series Analysis 216
4.1.1 Power-Series Model and Multitone
Response 216
4.1.2 Frequency Generation 224
4.1.3 Intercept Point and Power Relations 225
4.1.4 Intermodulation Measurement 231
4.1.5 Interconnections of Weakly Nonlinear
Components 232
4.2 Volterra-Series Analysis 235
4.2.1 Introduction to the Volterra Series 235
4.2.2 Volterra Functionals and Nonlinear
Transfer Functions 237
Nonlinear Microwave and RF Circuxii its
4.2.3 Determining Nonlinear Transfer Functions
by the Harmonic Input Method 241
4.2.4 Applying Nonlinear Transfer Functions 251
4.2.5 The Method of Nonlinear Currents 254
4.2.6 Application to Large Circuits 265
4.2.7 Controlled Sources 274
4.2.8 Spectral Regrowth and Adjacent-Channel
Power 274
References 276
Chapter 5 Balanced and Multiple-Device Circuits 277
5.1 Balanced Circuits Using Microwave Hybrids 278
5.1.1 Properties of Ideal Hybrids 278
5.1.2 Practical Hybrids 280
5.1.3 Properties of Hybrid-Coupled Components 288
5.2 Direct Interconnection of Microwave Components 300
5.2.1 Harmonic Properties of Two-Terminal
Device Interconnections 301
References 315
Chapter 6 Diode Mixers 317
6.1 Mixer Diodes 317
6.1.1 Mixer Diode Types 318
6.2 Nonlinear Analysis of Mixers 324
6.2.1 Multitone Harmonic-Balance Analysis
of Mixers 324
6.3 Single-Diode Mixer Design 328
6.3.1 Design Approach 329
6.3.2 Design Philosophy 329
6.3.3 Diode Selection 333
Contents xiii
6.3.4 dc Bias 335
6.3.5 Design Example 335
6.4 Balanced Mixers 339
6.4.1 Singly Balanced Mixers 339
6.4.2 Singly Balanced Mixer Example 343
6.4.3 Doubly Balanced Mixers 345
References 354
Chapter 7 Diode Frequency Multipliers 355
7.1 Varactor Frequency Multipliers 356
7.1.1 Noise Considerations 356
7.1.2 Power Relations and Efficiency
Limitations 357
7.1.3 Design of Varactor Frequency Multipliers 361
7.1.4 Design Example of a Varactor Multiplier 364
7.1.5 Final Details 366
7.2 Step-Recovery Diode Multipliers 370
7.2.1 Multiplier Operation 371
7.2.2 Design Example of an SRD Multiplier 378
7.2.3 Harmonic-Balance Simulation of SRD
Multipliers 381
7.3 Resistive Diode Frequency Multipliers 382
7.3.1 Approximate Analysis and Design of
Resistive Doublers 382
7.3.2 Design Example of a Resistive Doubler 388
7.4 Balanced Multipliers 391
References 392
Nonlinear Microwave and RF Circuxiv its
Chapter 8 Small-Signal Amplifiers 395
8.1 Review of Linear Amplifier Theory 395
8.1.1 Stability Considerations in Linear
Amplifier Design 395
8.1.2 Amplifier Design 400
8.1.3 Characteristics of FETs and Bipolars
in Small-Signal Amplifiers 405
8.1.4 Broadband Amplifiers 406
8.1.5 Negative Image Modeling 407
8.2 Nonlinear Analysis 409
8.2.1 Nonlinearities in FETs 410
8.2.2 Nonlinearities in Bipolar Devices 413
8.2.3 Nonlinear Phenomena in Small-Signal
Amplifiers 415
8.2.4 Calculating the Nonlinear Transfer
Functions 421
8.3 Linearity Optimization 421
8.3.1 Linearity Criteria 421
8.3.2 MESFETs and HEMTs 423
8.3.3 HBTs and BJTs 428
References 430
Chapter 9 Power Amplifiers 431
9.1 FET and Bipolar Devices for Power Amplifiers 431
9.1.1 Device Structure 431
9.1.2 Modeling Power Devices 434
9.2 Power-Amplifier Design 439
9.2.1 Class-A Amplifiers 439
9.2.2 Class-B Amplifiers 443
Contents xv
9.2.3 Other Modes of Operation 447
9.3 Design of Solid-State Power Amplifiers 449
9.3.1 Approximate Design of Class-A FET
Amplifiers 449
9.3.2 Approximate Design of Class-A Bipolar
Amplifiers 453
9.3.3 Approximate Design of Class-B
Amplifiers 454
9.3.4 Push-Pull Class-B Amplifiers 456
9.3.5 Harmonic Terminations 456
9.3.6 Design Example: HBT Power Amplifier 457
9.4 Harmonic-Balance Analysis of Power Amplifiers 462
9.4.1 Single-Tone Analysis 462
9.4.2 Multitone Analysis 463
9.5 Practical Considerations in Power-Amplifier
Design 465
9.5.1 Low Impedance and High Current 465
9.5.2 Uniform Excitation of Multicell Devices 466
9.5.3 Odd-Mode Oscillation 467
9.5.4 Efficiency and Load Optimization 467
9.5.5 Back-off and Linearity 468
9.5.6 Voltage Biasing and Current Biasing in
Bipolar Devices 470
9.5.7 Prematching 471
9.5.8 Thermal Considerations 471
References 473
Chapter 10 Active Frequency Multipliers 475
10.1 Design Philosophy 475
10.2 Design of FET Frequency Multipliers 477
Nonlinear Microwave and RF Circuxvi its
10.2.1 Design Theory 477
10.2.2 Design Example: A Simple FET
Multiplier 483
10.2.3 Design Example: A Broadband
Frequency Multiplier 487
10.2.4 Bipolar Frequency Multipliers 490
10.3 Harmonic-Balance Analysis of Active
Frequency Multipliers 490
10.4 Practical Considerations 491
10.4.1 Effect of Gate and Drain Terminations
at Unwanted Harmonics 491
10.4.2 Balanced Frequency Multipliers 491
10.4.3 Noise 493
10.4.4 Harmonic Rejection 494
10.4.5 Stability 494
10.4.6 High-Order Multiplication 495
References 495
Chapter 11 Active Mixers and FET Resistive Mixers 497
11.1 Design of Single-Gate FET Mixers 497
11.1.1 Design Philosophy 497
11.1.2 Approximate Mixer Analysis 501
11.1.3 Bipolar Mixers 505
11.1.4 Matching Circuits in Active Mixers 506
11.1.5 Nonlinear Analysis of Active Mixers 508
11.1.6 Design Example: Simple, Active FET
Mixer 508
11.2 Dual-Gate FET Mixers 510
11.3 Balanced Active Mixers 515
11.3.1 Singly Balanced Mixers 515
Contents xvii
11.3.2 Design Example: Computer-Oriented
Design Approach 518
11.3.3 Doubly Balanced FET Mixers 520
11.3.4 Active Baluns 522
11.3.5 Gilbert-Cell Mixers 524
11.4 FET Resistive Mixers 525
11.4.1 Fundamentals 526
11.4.2 Single-FET Resistive Mixers 527
11.4.3 Design of Single-FET Resistive Mixers 528
11.4.4 Design Example: FET Resistive Mixer 529
11.4.5 Balanced FET Resistive Mixers 530
References 536
Chapter 12 Transistor Oscillators 537
12.1 Classical Oscillator Theory 537
12.1.1 Feedback Oscillator Theory 537
12.1.2 Feedback Oscillator Design 540
12.1.3 Negative-Resistance Oscillation 542
12.1.4 Negative Resistance in Transistors 545
12.1.5 Oscillator Design by the Classical
Approach 549
12.2 Nonlinear Analysis of Transistor Oscillators 555
12.2.1 Numerical Device-Line Measurements 556
12.2.2 Harmonic Balance: Method 1 557
12.2.3 Harmonic Balance: Method 2 559
12.2.4 Eigenvalue Formulation 560
12.3 Practical Aspects of Oscillator Design 562
12.3.1 Multiple Resonances 562
12.3.2 Frequency Stability 562
Nonlinear Microwave and RF Circuxviii its
12.3.3 Dielectric Resonators 563
12.3.4 Hyperabrupt Varactors 564
12.3.5 Phase Noise 566
12.3.6 Pushing and Pulling 573
12.3.7 Post-Tuning Drift 573
12.3.8 Harmonics and Spurious Outputs 573
References 574
About the Author 575
Index 577 |
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?注册
×
|