|
为了实现一个立方体3D的翻转效果,需要获得原始图片翻转一定角度后通过透视矩阵(projective transform matrix)计算出来当前的图片,然后通过在一定时间内画获得的5帧图片来达到 立方体翻转的效果。
现本人需要 154*154 矩形在翻转过程中连贯效果的 5 帧图片对应的矩阵。举例:
176*220 的 projective transform matrix:
const float projective_transform_matrix[(GUI_SCREEN_SWITCH_EFFECT_CUBE_FRAME_NUM * 2) * 8] =
{
0.688160F, -0.134462F, -0.001176F, 0.000000F, 0.881279F, 0.000000F, -14.000000F, 14.000000F,
0.773994F, 0.389738F, 0.003732F, 0.000000F, 1.109589F, 0.000000F, 134.000000F, -12.000000F,
0.520771F, -0.184943F, -0.001655F, 0.000000F, 0.817352F, 0.000000F, -13.000000F, 21.000000F,
0.991429F, 0.413534F, 0.003759F, 0.000000F, 1.150685F, 0.000000F, 110.000000F, -16.000000F,
0.385962F, -0.218538F, -0.001935F, 0.000000F, 0.767123F, 0.000000F, -10.000000F, 27.000000F,
1.148426F, 0.383731F, 0.003530F, 0.000000F, 1.159817F, 0.000000F, 87.000000F, -17.000000F,
0.227092F, -0.235060F, -0.002094F, 0.000000F, 0.726027F, 0.000000F, -3.000000F, 31.000000F,
1.220975F, 0.310790F, 0.002723F, 0.000000F, 1.146119F, 0.000000F, 58.000000F, -16.000000F,
0.076698F, -0.242436F, -0.002178F, 0.000000F, 0.689498F, 0.000000F, 7.000000F, 35.000000F,
1.244230F, 0.214933F, 0.001989F, 0.000000F, 1.114155F, 0.000000F, 33.000000F, -12.000000F
}
排列是顺时针
前一个翻转面得矩阵
后一个翻转面矩阵
前一个翻转面得矩阵
后一个翻转面矩阵
。。。。。。
本文来自:我爱研发网(52RD.com) 详细出处:http://www.52rd.com/Business/Post.asp |
|