huangmengfei 发表于 2010-7-13 11:32:25

不错的信号完整性英文书籍(Eric Bogantin)

很不错的信号完整性英文书籍

   Chapter 1.Signal Integrity Is in Your Future
      Section 1.1.What Is Signal Integrity?
      Section 1.2.Signal Quality on a Single Net
      Section 1.3.Cross Talk
      Section 1.4.Rail-Collapse Noise
      Section 1.5.Electromagnetic Interference (EMI)
      Section 1.6.Two Important Signal Integrity Generalizations
      Section 1.7.Trends in Electronic Products
      Section 1.8.The Need for a New Design Methodology
      Section 1.9.A New Product Design Methodology
      Section 1.10.Simulations
      Section 1.11.Modeling and Models
      Section 1.12.Creating Circuit Models from Calculation
      Section 1.13.Three Types of Measurements
      Section 1.14.The Role of Measurements
      Section 1.15.The Bottom Line

   Chapter 2.Time and Frequency Domains
      Section 2.1.The Time Domain
      Section 2.2.Sine Waves in the Frequency Domain
      Section 2.3.Shorter Time to a Solution in the Frequency Domain
      Section 2.4.Sine Wave Features
      Section 2.5.The Fourier Transform
      Section 2.6.The Spectrum of a Repetitive Signal
      Section 2.7.The Spectrum of an Ideal Square Wave
      Section 2.8.From the Frequency Domain to the Time Domain
      Section 2.9.Effect of Bandwidth on Rise Time
      Section 2.10.Bandwidth and Rise Time
      Section 2.11.What Does "Significant" Mean?
      Section 2.12.Bandwidth of Real Signals
      Section 2.13.Bandwidth and Clock Frequency
      Section 2.14.Bandwidth of a Measurement
      Section 2.15.Bandwidth of a Model
      Section 2.16.Bandwidth of an Interconnect
      Section 2.17.Bottom Line

   Chapter 3.Impedance and Electrical Models
      Section 3.1.Describing Signal-Integrity Solutions in Terms of Impedance
      Section 3.2.What Is Impedance?
      Section 3.3.Real vs. Ideal Circuit Elements
      Section 3.4.Impedance of an Ideal Resistor in the Time Domain
      Section 3.5.Impedance of an Ideal Capacitor in the Time Domain
      Section 3.6.Impedance of an Ideal Inductor in the Time Domain
      Section 3.7.Impedance in the Frequency Domain
      Section 3.8.Equivalent Electrical Circuit Models
      Section 3.9.Circuit Theory and SPICE
      Section 3.10.Introduction to Modeling
      Section 3.11.The Bottom Line

   Chapter 4.The Physical Basis of Resistance
      Section 4.1.Translating Physical Design into Electrical Performance
      Section 4.2.The Only Good Approximation for the Resistance of Interconnects
      Section 4.3.Bulk Resistivity
      Section 4.4.Resistance per Length
      Section 4.5.Sheet Resistance
      Section 4.6.The Bottom Line

   Chapter 5.The Physical Basis of Capacitance
      Section 5.1.Current Flow in Capacitors
      Section 5.2.The Capacitance of a Sphere
      Section 5.3.Parallel Plate Approximation
      Section 5.4.Dielectric Constant
      Section 5.5.Power and Ground Planes and Decoupling Capacitance
      Section 5.6.Capacitance per Length
      Section 5.7.2D Field Solvers
      Section 5.8.Effective Dielectric Constant
      Section 5.9.The Bottom Line

   Chapter 6.The Physical Basis of Inductance
      Section 6.1.What Is Inductance?
      Section 6.2.Inductance Principle #1: There Are Circular Magnetic-Field Line Loops Around All Currents
      Section 6.3.Inductance Principle #2: Inductance Is the Number of Webers of Field Line Loops Around a Conductor per Amp of Current Through It
      Section 6.4.Self-Inductance and Mutual Inductance
      Section 6.5.Inductance Principle #3: When the Number of Field Line Loops Around a Conductor Changes, There Will Be a Voltage Induced Across the Ends of the Conductor
      Section 6.6.Partial Inductance
      Section 6.7.Effective, Total, or Net Inductance and Ground Bounce
      Section 6.8.Loop Self- and Mutual Inductance
      Section 6.9.The Power-Distribution System (PDS) and Loop Inductance
      Section 6.10.Loop Inductance per Square of Planes
      Section 6.11.Loop Inductance of Planes and Via Contacts
      Section 6.12.Loop Inductance of Planes with a Field of Clearance Holes
      Section 6.13.Loop Mutual Inductance
      Section 6.14.Equivalent Inductance
      Section 6.15.Summary of Inductance
      Section 6.16.Current Distributions and Skin Depth
      Section 6.17.High-Permeability Materials
      Section 6.18.Eddy Currents
      Section 6.19.The Bottom Line

   Chapter 7.The Physical Basis of Transmission Lines
      Section 7.1.Forget the Word Ground
      Section 7.2.The Signal
      Section 7.3.Uniform Transmission Lines
      Section 7.4.The Speed of Electrons in Copper
      Section 7.5.The Speed of a Signal in a Transmission Line
      Section 7.6.Spatial Extent of the Leading Edge
      Section 7.7."Be the Signal"
      Section 7.8.The Instantaneous Impedance of a Transmission Line
      Section 7.9.Characteristic Impedance and Controlled Impedance
      Section 7.10.Famous Characteristic Impedances
      Section 7.11.The Impedance of a Transmission Line
      Section 7.12.Driving a Transmission Line
      Section 7.13.Return Paths
      Section 7.14.When Return Paths Switch Reference Planes
      Section 7.15.A First-Order Model of a Transmission Line
      Section 7.16.Calculating Characteristic Impedance with Approximations
      Section 7.17.Calculating the Characteristic Impedance with a 2D Field Solver
      Section 7.18.An n-Section Lumped Circuit Model
      Section 7.19.Frequency Variation of the Characteristic Impedance
      Section 7.20.The Bottom Line

   Chapter 8.Transmission Lines and Reflections
      Section 8.1.Reflections at Impedance Changes
      Section 8.2.Why Are There Reflections?
      Section 8.3.Reflections from Resistive Loads
      Section 8.4.Source Impedance
      Section 8.5.Bounce Diagrams
      Section 8.6.Simulating Reflected Waveforms
      Section 8.7.Measuring Reflections with a TDR
      Section 8.8.Transmission Lines and Unintentional Discontinuities
      Section 8.9.When to Terminate
      Section 8.10.The Most Common Termination Strategy for Point-to-Point Topology
      Section 8.11.Reflections from Short Series Transmission Lines
      Section 8.12.Reflections from Short-Stub Transmission Lines
      Section 8.13.Reflections from Capacitive End Terminations
      Section 8.14.Reflections from Capacitive Loads in the Middle of a Trace
      Section 8.15.Capacitive Delay Adders
      Section 8.16.Effects of Corners and Vias
      Section 8.17.Loaded Lines
      Section 8.18.Reflections from Inductive Discontinuities
      Section 8.19.Compensation
      Section 8.20.The Bottom Line

   Chapter 9.Lossy Lines, Rise-Time Degradation, and Material Properties
      Section 9.1.Why Worry About Lossy Lines
      Section 9.2.Losses in Transmission Lines
      Section 9.3.Sources of Loss: Conductor Resistance and Skin Depth
      Section 9.4.Sources of Loss: The Dielectric
      Section 9.5.Dissipation Factor
      Section 9.6.The Real Meaning of Dissipation Factor
      Section 9.7.Modeling Lossy Transmission Lines
      Section 9.8.Characteristic Impedance of a Lossy Transmission Line
      Section 9.9.Signal Velocity in a Lossy Transmission Line
      Section 9.10.Attenuation and the dB
      Section 9.11.Attenuation in Lossy Lines
      Section 9.12.Measured Properties of a Lossy Line in the Frequency Domain
      Section 9.13.The Bandwidth of an Interconnect
      Section 9.14.Time-Domain Behavior of Lossy Lines
      Section 9.15.Improving the Eye Diagram of a Transmission Line
      Section 9.16.Pre-emphasis and Equalization
      Section 9.17.The Bottom Line

   Chapter 10.Cross Talk in Transmission Lines
      Section 10.1.Superposition
      Section 10.2.Origin of Coupling: Capacitance and Inductance
      Section 10.3.Cross Talk in Transmission Lines: NEXT and FEXT
      Section 10.4.Describing Cross Talk
      Section 10.5.The SPICE Capacitance Matrix
      Section 10.6.The Maxwell Capacitance Matrix and 2D Field Solvers
      Section 10.7.The Inductance Matrix
      Section 10.8.Cross Talk in Uniform Transmission Lines and Saturation Length
      Section 10.9.Capacitively Coupled Currents
      Section 10.10.Inductively Coupled Currents
      Section 10.11.Near-End Cross Talk
      Section 10.12.Far-End Cross Talk
      Section 10.13.Decreasing Far-End Cross Talk
      Section 10.14.Simulating Cross Talk
      Section 10.15.Guard Traces
      Section 10.16.Cross Talk and Dielectric Constant
      Section 10.17.Cross Talk and Timing
      Section 10.18.Switching Noise
      Section 10.19.Summary of Reducing Cross Talk
      Section 10.20.The Bottom Line

   Chapter 11.Differential Pairs and Differential Impedance
      Section 11.1.Differential Signaling
      Section 11.2.A Differential Pair
      Section 11.3.Differential Impedance with No Coupling
      Section 11.4.The Impact from Coupling
      Section 11.5.Calculating Differential Impedance
      Section 11.6.The Return-Current Distribution in a Differential Pair
      Section 11.7.Odd and Even Modes
      Section 11.8.Differential Impedance and Odd-Mode Impedance
      Section 11.9.Common Impedance and Even-Mode Impedance
      Section 11.10.Differential and Common Signals and Odd- and Even-Mode Voltage Components
      Section 11.11.Velocity of Each Mode and Far-End Cross Talk
      Section 11.12.Ideal Coupled Transmission-Line Model or an Ideal Differential Pair
      Section 11.13.Measuring Even- and Odd-Mode Impedance
      Section 11.14.Terminating Differential and Common Signals
      Section 11.15.Conversion of Differential to Common Signals
      Section 11.16.EMI and Common Signals
      Section 11.17.Cross Talk in Differential Pairs
      Section 11.18.Crossing a Gap in the Return Path
      Section 11.19.To Tightly Couple or Not to Tightly Couple
      Section 11.20.Calculating Odd and Even Modes from Capacitance- and Inductance-Matrix Elements
      Section 11.21.The Characteristic Impedance Matrix
      Section 11.22.The Bottom Line

   Appendix A.100 General Design Guidelines to Minimize Signal-Integrity Problems
      Section A.1.Minimize Signal-Quality Problems on One Net
      Section A.2.Minimize Cross Talk
      Section A.3.Minimize Rail Collapse
      Section A.4.Minimize EMI

   Appendix B.100 Collected Rules of Thumb to Help Estimate Signal-Integrity Effects
      Section B.1.Chapter 2
      Section B.2.Chapter 3
      Section B.3.Chapter 4
      Section B.4.Chapter 5
      Section B.5.Chapter 6
      Section B.6.Chapter 7
      Section B.7.Chapter 8
      Section B.8.Chapter 9
      Section B.9.Chapter 10
      Section B.10.Chapter 11

【文件名】:10713@52RD_超好Prentice Hall PTR - Signal Integrity - Simplified.part1.rar
【格 式】:rar
【大 小】:2000K
【简 介】:
【目 录】:


<p align=right><font color=red>+5 RD币</font></p>

huangmengfei 发表于 2010-7-13 11:38:47

不错的信号完整性英文书籍(Eric Bogantin)

【文件名】:10713@52RD_超好Prentice Hall PTR - Signal Integrity - Simplified.part5.rar
【格 式】:rar
【大 小】:577K
【简 介】:
【目 录】:

huangmengfei 发表于 2010-7-13 11:37:57

不错的信号完整性英文书籍(Eric Bogantin)

【文件名】:10713@52RD_超好Prentice Hall PTR - Signal Integrity - Simplified.part4.rar
【格 式】:rar
【大 小】:2000K
【简 介】:
【目 录】:

huangmengfei 发表于 2010-7-13 11:36:50

【文件名】:10713@52RD_超好Prentice Hall PTR - Signal Integrity - Simplified.part3.rar
【格 式】:rar
【大 小】:2000K
【简 介】:
【目 录】:

huangmengfei 发表于 2010-7-13 11:34:34

不错的信号完整性英文书籍(Eric Bogantin)

【文件名】:10713@52RD_超好Prentice Hall PTR - Signal Integrity - Simplified.part2.rar
【格 式】:rar
【大 小】:2000K
【简 介】:
【目 录】:

wangxutao 发表于 2010-12-31 19:11:24

thank you!!!!

wangxutao 发表于 2010-12-31 19:09:28

thank you!

wangxutao 发表于 2010-12-31 19:06:00

thank you!!!!!!!!!!

wangxutao 发表于 2010-12-31 19:05:15

thank you!!!!!!!!!!

wangxutao 发表于 2010-12-31 18:44:20

thank you!!!!!

wangxutao 发表于 2010-12-31 18:30:30

thank you!!!!!!!!!

wangxutao 发表于 2010-12-31 18:25:42

thank you!

wangxutao 发表于 2010-12-31 18:24:04

thank you!!!

wangxutao 发表于 2010-12-31 18:17:56

thank you!!!!!!!!!

wangxutao 发表于 2010-12-31 18:14:26

thank you!!!!!!

wangxutao 发表于 2010-12-31 18:08:50

thank you!!

wangxutao 发表于 2010-12-31 17:54:19

thank you!!!!

kkwd 发表于 2011-1-7 16:34:48

Thanks a lot

suely 发表于 2011-2-17 13:59:32

Thanks a lot

suely 发表于 2011-2-17 13:58:16

十分感谢楼主,对于没币的新人来说,实在是捡到宝啊
页: [1] 2
查看完整版本: 不错的信号完整性英文书籍(Eric Bogantin)