|
楼主 |
发表于 2007-5-26 21:36:17
|
显示全部楼层
学习ARM开发(7)
上一次,学习到第一段代码,这次接着学习第二段代码,而第二段代码主要作用于保存数据的。
/*
*************************************************************************
*
* 启动代码。
*
* 如果不作内存初始化,就只建立堆栈,重新定位代码到RAM位置。
* 然后就可以跳到第二阶段的代码运行了。
*
*
*
*************************************************************************
*/
/* 保存变量的数据区 */
_TEXT_BASE:
.word TEXT_BASE
.globl _armboot_start
_armboot_start:
.word _start
/*
* These are defined in the board-specific linker script.
*/
.globl _bss_start
_bss_start:
.word __bss_start
.globl _bss_end
_bss_end:
.word _end
#ifdef CONFIG_USE_IRQ
/* IRQ stack memory (calculated at run-time) */
.globl IRQ_STACK_START
IRQ_STACK_START:
.word 0x0badc0de
/* IRQ stack memory (calculated at run-time) */
.globl FIQ_STACK_START
FIQ_STACK_START:
.word 0x0badc0de
#endif
上面这段代码,主要保存一些全局变量,用于BOOT程序从FLASH拷贝到RAM,或者其它的使用。
还有一些变量的长度是通过连接脚本里得到,实际上由编译器算出来的。
学习ARM开发(8)
上一次看了数据区,这次要看从引导那里跳到这里执行时,运行什么东西了。
/*
* 实际运行的复位代码。从一开始运行的代码,就跳到这里运行。
*/
reset:
/*
* 设置cpu运行在SVC32模式。
*/
mrs r0,cpsr
bic r0,r0,#0x1f
orr r0,r0,#0x13
msr cpsr,r0
具体分析如下:
/*
* 实际运行的复位代码。从一开始运行的代码,就跳到这里运行。
*/
reset:
/*
* 设置cpu运行在SVC32模式。S3C44B0共有7种模式。
*/
mrs r0,cpsr
取得当前程序状态寄存器cpsr到r0。
bic r0,r0,#0x1f
这里使用位清除指令,把中断全部清除,只置位模式控制位。
orr r0,r0,#0x13
计算为超级保护模式。
msr cpsr,r0
设置cpsr为超级保护模式。
通过设置ARM的CPSR寄存器,让CPU运行在操作系统模式,为后面进行其它操作作好准备了。后面的代码如下:
/*
* 当是从FLASH启动时,就要进行内存测试,当
* 是从RAM启动时,一般就是开发本源程序时,就
* 可以跳过。
*
*/
#ifdef CONFIG_INIT_CRITICAL
bl cpu_init_crit
/*
* 在重新定位之前,要进行RAM访问时间测试,因为每个开发
* 都是不一样的。
* 可以在文件memsetup.S里看到它的说明。
*/
bl memsetup
#endif
/* 进行重定位 */
relocate: /* 重定位Boot代码到RAM内存,比如从FLASH移到RAM */
adr r0, _start /* 把_start的相对地址移到r0 */
ldr r1, _TEXT_BASE /* 把_TEXT_BASE地址,就是BOOT在RAM中运行地址 */
cmp r0, r1 /* 比较两个地址是否相同,如果相同,就已经在RAM运行,否则就是FLASH中运行。 */
beq stack_setup
/* 是在FLASH中运行,要把FLASH中的BOOT代码移到RAM中,然后再运行. */
ldr r2, _armboot_start
ldr r3, _bss_start
sub r2, r3, r2 /* r2保存引导代码大小 */
add r2, r0, r2 /* r2保存引导代码最后地址 */
copy_loop:
ldmia r0!, {r3-r10} /* 从源地址[r0]读取8个字节到寄存器,每读一个就更新一次r0地址 */
stmia r1!, {r3-r10} /* 拷贝寄存器r3-r10的值保存到 [r1]指明的地址,每写一个字节,就增加1. */
cmp r0, r2 /* 判断是否拷贝到[r2]地址,就是引导代码结束位置。 */
ble copy_loop /* 循环拷贝 */
/*
拷贝中断向量表,实际是建立起二级中断向量表,当CPU中断时,先运行FLASH中断,接着就转移到实际中向表执行中断程序。
*/
adr r0, real_vectors
add r2, r0, #1024
ldr r1, =0x0c000000
add r1, r1, #0x08
vector_copy_loop:
ldmia r0!, {r3-r10}
stmia r1!, {r3-r10}
cmp r0, r2
ble vector_copy_loop
/* 建立起堆栈 */
stack_setup:
ldr r0, _TEXT_BASE /* upper 128 KiB: relocated uboot */
sub r0, r0, #CFG_MALLOC_LEN /* malloc area */
sub r0, r0, #CFG_GBL_DATA_SIZE /* bdinfo */
#ifdef CONFIG_USE_IRQ
sub r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ)
#endif
sub sp, r0, #12 /* leave 3 words for abort-stack */
ldr pc, _start_armboot /* 已经准备好了堆栈,就可跳到C写的代码里,
由于我的代码是ARM,就是跳到
lib_arm\board.c(208):void start_armboot (void)中运行。 */
_start_armboot: .word start_armboot
/*
*************************************************************************
*
* CPU_init_critical临界区寄存器
*
* 设置一些重要的寄存器,并进行内存测试。
*
*
*************************************************************************
*/
#define INTCON (0x01c00000+0x200000) /* 中断控制器 */
#define INTMSK (0x01c00000+0x20000c) /* 中断控制屏蔽寄存器 */
#define LOCKTIME (0x01c00000+0x18000c)
#define PLLCON (0x01c00000+0x180000)
#define CLKCON (0x01c00000+0x180004)
#define WTCON (0x01c00000+0x130000)
cpu_init_crit:
/* 关闭看门狗 */
ldr r0, =WTCON
ldr r1, =0x0
str r1, [r0]
/*
* 清除所有中断位,设置INTMRs实现。
*/
ldr r1,=INTMSK
ldr r0, =0x03fffeff
str r0, [r1]
ldr r1, =INTCON
ldr r0, =0x05
str r0, [r1]
/* 设置时钟控制寄存器 */
ldr r1, =LOCKTIME
ldrb r0, =800
strb r0, [r1]
/* 设置锁相环,控制CPU运行速度。 */
ldr r1, =PLLCON
#if CONFIG_S3C44B0_CLOCK_SPEED==66
ldr r0, =0x34031 /* 66MHz (Quartz=11MHz) */
#elif CONFIG_S3C44B0_CLOCK_SPEED==75
ldr r0, =0x610c1 /*B2: Xtal=20mhz Fclk=75MHz */
#else
# error CONFIG_S3C44B0_CLOCK_SPEED undefined
#endif
str r0, [r1]
ldr r1,=CLKCON
ldr r0, =0x7ff8
str r0, [r1]
/* 调用子函数返回 */
mov pc, lr
/*************************************************/
/* 实际的中断向量表 */
/*************************************************/
real_vectors:
b reset
b undefined_instruction
b software_interrupt
b prefetch_abort
b data_abort
b not_used
b irq
b fiq
/*************************************************/
undefined_instruction:
mov r6, #3
b reset
software_interrupt:
mov r6, #4
b reset
prefetch_abort:
mov r6, #5
b reset
data_abort:
mov r6, #6
b reset
not_used:
/* we *should* never reach this */
mov r6, #7
b reset
irq:
mov r6, #8
b reset
fiq:
mov r6, #9
b reset
学习ARM开发(9)
上一次把引导的汇编看完,已经准备C的运行环境,下面就开始学习C的源程序,从start.S文件里到跳文件
lib_arm\board.c里运行.
/*
引导程序从汇编start.S里跳到这里执行。
蔡军生 2005/07/19
*/
void start_armboot (void)
{
/* 声明一个全局指针,它是指向一个数据结构,用于保存参数。
并且它占用r8寄存器,用它来保存内存地址,达到全局使用目的。
*/
DECLARE_GLOBAL_DATA_PTR;
ulong size;
init_fnc_t **init_fnc_ptr;
char *s;
#if defined(CONFIG_VFD) || defined(CONFIG_LCD)
unsigned long addr;
#endif
/* gd指针可写,因为已经分配一个寄存器给它作为变量。
这里就相当于把后面算出来的地址保存到r8寄存器.
*/
gd = (gd_t*)(_armboot_start - CFG_MALLOC_LEN - sizeof(gd_t));
/* 下面一句是阻止3.4以上版本的GCC进行代码优化,把后面的代码删除掉。 */
__asm__ __volatile__("": : :"memory");
/* 清空gd指向的结构 */
memset ((void*)gd, 0, sizeof (gd_t));
/* */
gd->bd = (bd_t*)((char*)gd - sizeof(bd_t));
memset (gd->bd, 0, sizeof (bd_t));
monitor_flash_len = _bss_start - _armboot_start;
这一段准备好保存参数的全局变量区.
后面就是一系列的初始化和获取正确的参数. |
|