找回密码
 注册
搜索
查看: 4069|回复: 29

[讨论] 一款开关电源系统的设计版

[复制链接]
发表于 2006-12-2 00:17:16 | 显示全部楼层 |阅读模式
开关电源供电系统设计
目录
开关电源供电系统设计... 1
目录... 1
第一章、绪论... 2
1.1引言... 2
1.2开关电源技术发展的十个关注点... 4
1.3  开关电源的发展和趋势... 10
第二章、设计思路... 12
2.1开关型稳压电源电路的基本组成... 12
2.2开关电源的原理... 13
2.2.1高频开关电源由以下几个部分组成:... 13
2.2.2开关控制稳压原理... 14
2.2.3开关电源的抗干扰设计... 16
第三章、硬件设计 ——恒流控制型脉宽调制(PWM)开关稳压电源... 21
3.1电源设计... 21
3.1.1元件清单... 21
3.1.2芯片简介... 24
3.1.3 UC3842的内部结构和特点... 28
3.1.4举例说明工作过程... 29
3.1.5参数设计... 33
3.2设计中的注意事项... 34
3.2.1起动电路的设计... 34
3.2.2反馈绕组的设计... 34
3.3.3用UC3842设计开关电源的几个技巧... 34
第四章、硬件的相关测试... 39
4.1电源标准... 39
4.2开关电源的测试:... 40
4.2.1输出电压调整:... 41
4.2.2电源调整率:... 41
4.2.3负载调整率:... 42
4.2.4综合调整率:... 43
4.2.5输出杂讯(PARD):... 44
4.2.6输入功率与效率:... 45
4.2.7动态负载或暂态负载:... 46
4.2.8启动时间(Set-Up Time)与保持时间(Hold-Up Time):... 47
4.2.9保护功能测试:... 48
4.2.10其他测试... 48
4.3相关测量点的选择... 49
4.4示波器实际测量纹波系数(波形)... 50
第五章、设计总结... 52
第六章、致谢... 53
参考文献... 54

摘要:电子产品,特别是军用稳压电源的设计是一个系统工程,不但要考虑电源本身参数设计,还要考虑电气设计、电磁兼容设计、热设计、安全性设计、三防设计等方面。因为任何方面那怕是最微小的疏忽,都可能导致整个电源的崩溃,所以我们应充分认识到电源产品可靠性设计的重要性.
  关键词:脉宽调制;电流控制;开关电源;电磁干扰;EMI滤波器;共模;差模


第一章、绪论
1.1引言
随着电子技术的发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,对电源的要求更加灵活多样。电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。传统的晶体管串联调整稳压电源,是连续控制的线性稳压电源,这种传统稳压电源技术比较成熟。并且已有大量集成化的线性稳压电源模块,具有稳定性能好、输出纹波电压小、使用可靠等特点。但其通常都需要体积大且笨重的工频变压器和隔离之用,滤波器的体积和重量也很大。而调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45%左右,另外,由于调整管上消耗较大的功率,所以需要采用大功率调整管并装有体积很大的散热器,于是它很难满足电子设备发展的要求。从而促成了高效率、体积小、重量轻的开关电源的迅速发展。
开关型稳压电源就是采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。以功率晶体管(GTR)为例,当开关管饱和导通时,集电极和发射极两端的压降接近零,在开关管截止时,其集电极电流为零,所以其功耗小,效率可高达70%~95%。而功耗小,散热器也随之减小,同时开关型稳压电源直接对电网电压进行整流滤波调整,然后由开关调整管进行稳压,不需要电源变压器;此外,开关工作频率在几十千赫,滤波电容器、电感器数值较小。因此开关电源具有重量轻,体积小等特点。另外,由于功耗小,机内温升低,从而提高了整机的稳定性和可靠性。而且其对电网的适应能力也有较大的提高,一般串联稳压电源允许电网波动范围为220V+10%,而开关型稳压电源在电网电压从110V~260V范围内变化时,都可获得稳定的输出电压。
1.2开关电源技术发展的十个关注点
上世纪60年代,开关电源的问世,使其逐步取代了线性稳压电源和SCR相控电源。40多年来,开关电源技术有了飞迅发展和变化,经历了功率半导体器件、高频化和软开关技术、开关电源系统的集成技术三个发展阶段。功率半导体器件从双极型器件(BPT、SCR、GTO)发展为MOS型器件(功率MOSFET、IGBT、IGCT等),使电力电子系统有可能实现高频化,并大幅度降低导通损耗,电路也更为简单。自上世纪80年代开始,高频化和软开关技术的开发研究,使功率变换器性能更好、重量更轻、尺寸更小。高频化和软开关技术是过去20年国际电力电子界研究的热点之一。
上世纪90年代中期,集成电力电子系统和集成电力电子模块(IPEM)技术开始发展,它是当今国际电力电子界亟待解决的新问题之一。

    关注点一:功率半导体器件性能

    1998年,Infineon公司推出冷MOS管,它采用“超级结”(Super-Junction)结构,故又称超结功率MOSFET。工作电压600V~800V,通态电阻几乎降低了一个数量级,仍保持开关速度快的特点,是一种有发展前途的高频功率半导体器件。IGBT刚出现时,电压、电流额定值只有600V、25A。很长一段时间内,耐压水平限于1200V~1700V,经过长时间的探索研究和改进,现在IGBT的电压、电流额定值已分别达到3300V/1200A和4500V/1800A,高压IGBT单片耐压已达到6500V,一般IGBT的工作频率上限为20kHz~40kHz,基于穿通(PT)型结构应用新技术制造的IGBT,可工作于150kHz(硬开关)和300kHz(软开关)。IGBT的技术进展实际上是通态压降,快速开关和高耐压能力三者的折中。随着工艺和结构形式的不同,IGBT在20年历史发展进程中,有以下几种类型:穿通(PT)型、非穿通(NPT)型、软穿通(SPT)型、沟漕型和电场截止(FS)型。碳化硅SiC是功率半导体器件晶片的理想材料,其优点是:禁带宽、工作温度高(可达600℃)、热稳定性好、通态电阻小、导热性能好、漏电流极小、PN结耐压高等,有利于制造出耐高温的高频大功率半导体器件。可以预见,碳化硅将是21世纪最可能成功应用的新型功率半导体器件材料。

    关注点二:开关电源功率密度

    提高开关电源的功率密度,使之小型化、轻量化,是人们不断努力追求的目标。电源的高频化是国际电力电子界研究的热点之一。电源的小型化、减轻重量对便携式电子设备(如移动电话,数字相机等)尤为重要。使开关电源小型化的具体办法有:
一是高频化。为了实现电源高功率密度,必须提高PWM变换器的工作频率、从而减小电路中储能元件的体积重量。
二是应用压电变压器。应用压电变压器可使高频功率变换器实现轻、小、薄和高功率密度。压电变压器利用压电陶瓷材料特有的“电压-振动”变换和“振动-电压”变换的性质传送能量,其等效电路如同一个串并联谐振电路,是功率变换领域的研究热点之一。
三是采用新型电容器。为了减小电力电子设备的体积和重量,必须设法改进电容器的性能,提高能量密度,并研究开发适合于电力电子及电源系统用的新型电容器,要求电容量大、等效串联电阻ESR小、体积小等。

    关注点三:高频磁与同步整流技术

    电源系统中应用大量磁元件,高频磁元件的材料、结构和性能都不同于工频磁元件,有许多问题需要研究。对高频磁元件所用磁性材料有如下要求:损耗小,散热性能好,磁性能优越。适用于兆赫级频率的磁性材料为人们所关注,纳米结晶软磁材料也已开发应用。高频化以后,为了提高开关电源的效率,必须开发和应用软开关技术。它是过去几十年国际电源界的一个研究热点。对于低电压、大电流输出的软开关变换器,进一步提高其效率的措施是设法降低开关的通态损耗。例如同步整流SR技术,即以功率MOS管反接作为整流用开关二极管,代替萧特基二极管(SBD),可降低管压降,从而提高电路效率。

    关注点四:分布电源结构

    分布电源系统适合于用作超高速集成电路组成的大型工作站(如图像处理站)、大型数字电子交换系统等的电源,其优点是:可实现DC/DC变换器组件模块化;容易实现N+1功率冗余,提高系统可靠性;易于扩增负载容量;可降低48V母线上的电流和电压降;容易做到热分布均匀、便于散热设计;瞬态响应好;可在线更换失效模块等。现在分布电源系统有两种结构类型,一是两级结构,另一种是三级结构。

    关注点五:PFC变换器

    由于AC/DC变换电路的输入端有整流元件和滤波电容,在正弦电压输入时,单相整流电源供电的电子设备,电网侧(交流输入端)功率因数仅为0.6~0.65。采用PFC(功率因数校正)变换器,网侧功率因数可提高到0.95~0.99,输入电流THD小于10%。既治理了电网的谐波污染,又提高了电源的整体效率。这一技术称为有源功率因数校正APFC单相APFC国内外开发较早,技术已较成熟;三相APFC的拓扑类型和控制策略虽然已经有很多种,但还有待继续研究发展。
一般高功率因数AC/DC开关电源,由两级拓扑组成,对于小功率AC/DC开关电源来说,采用两级拓扑结构总体效率低、成本高。 如果对输入端功率因数要求不特别高时,将PFC变换器和后级DC/DC变换器组合成一个拓扑,构成单级高功率因数AC/DC开关电源,只用一个主开关管,可使功率因数校正到0.8以上,并使输出直流电压可调,这种拓扑结构称为单管单级即S4PFC变换器。

    关注点六:电压调节器模块VRM

    电压调节器模块是一类低电压、大电流输出DC-DC变换器模块,向微处理器提供电源。现在数据处理系统的速度和效率日益提高,为降低微处理器IC的电场强度和功耗,必须降低逻辑电压,新一代微处理器的逻辑电压已降低至1V,而电流则高达50A~100A,所以对VRM的要求是:输出电压很低、输出电流大、电流变化率高、快速响应等。

    关注点七:全数字化控制

    电源的控制已经由模拟控制,模数混合控制,进入到全数字控制阶段。全数字控制是一个新的发展趋势,已经在许多功率变换设备中得到应用。但是过去数字控制在DC/DC变换器中用得较少。近两年来,电源的高性能全数字控制芯片已经开发,费用也已降到比较合理的水平,欧美已有多家公司开发并制造出开关变换器的数字控制芯片及软件。全数字控制的优点是:数字信号与混合模数信号相比可以标定更小的量,芯片价格也更低廉;对电流检测误差可以进行精确的数字校正,电压检测也更精确;可以实现快速,灵活的控制设计。

    关注点八:电磁兼容性

    高频开关电源的电磁兼容EMC问题有其特殊性。功率半导体开关管在开关过程中产生的di/dt和dv/dt,引起强大的传导电磁干扰和谐波干扰。有些情况还会引起强电磁场(通常是近场)辐射。不但严重污染周围电磁环境,对附近的电气设备造成电磁干扰,还可能危及附近操作人员的安全。同时,电力电子电路(如开关变换器)内部的控制电路也必须能承受开关动作产生的EMI及应用现场电磁噪声的干扰。上述特殊性,再加上EMI测量上的具体困难,在电力电子的电磁兼容领域里,存在着许多交叉科学的前沿课题有待人们研究。国内外许多大学均开展了电力电子电路的电磁干扰和电磁兼容性问题的研究,并取得了不少可喜成果。近几年研究成果表明,开关变换器中的电磁噪音源,主要来自主开关器件的开关作用所产生的电压、电流变化。变化速度越快,电磁噪音越大。

    关注点九:设计和测试技术

    建模、仿真和CAD是一种新的设计工具。为仿真电源系统,首先要建立仿真模型,包括电力电子器件、变换器电路、数字和模拟控制电路以及磁元件和磁场分布模型等,还要考虑开关管的热模型、可靠性模型和EMC模型。各种模型差别很大,建模的发展方向是:数字-模拟混合建模、混合层次建模以及将各种模型组成一个统一的多层次模型等。电源系统的CAD,包括主电路和控制电路设计、器件选择、参数最优化、磁设计、热设计、EMI设计和印制电路板设计、可靠性预估、计算机辅助综合和优化设计等。用基于仿真的专家系统进行电源系统的CAD,可使所设计的系统性能最优,减少设计制造费用,并能做可制造性分析,是21世纪仿真和CAD技术的发展方向之一。此外,电源系统的热测试、EMI测试、可靠性测试等技术的开发、研究与应用也是应大力发展的。

    关注点十:系统集成技术

    电源设备的制造特点是:非标准件多、劳动强度大、设计周期长、成本高、可靠性低等,而用户要求制造厂生产的电源产品更加实用、可靠性更高、更轻小、成本更低。这些情况使电源制造厂家承受巨大压力,迫切需要开展集成电源模块的研究开发,使电源产品的标准化、模块化、可制造性、规模生产、降低成本等目标得以实现。实际上,在电源集成技术的发展进程中,已经经历了电力半导体器件模块化,功率与控制电路的集成化,集成无源元件(包括磁集成技术)等发展阶段。近年来的发展方向是将小功率电源系统集成在一个芯片上,可以使电源产品更为紧凑,体积更小,也减小了引线长度,从而减小了寄生参数。在此基础上,可以实现一体化,所有元器件连同控制保护集成在一个模块中。
    上世纪90年代,随着大规模分布电源系统的发展,一体化的设计观念被推广到更大容量、更高电压的电源系统集成,提高了集成度,出现了集成电力电子模块(IPEM)。IPEM将功率器件与电路、控制以及检测、执行等元件集成封装,得到标准的,可制造的模块,既可用于标准设计,也可用于专用、特殊设计。优点是可快速高效为用户提供产品,显著降低成本,提高可靠性。
1.3  开关电源的发展和趋势
1995年美国罗耶(GH.Roger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换控制电路的开端,1957年美国查赛(Jen Sen)发明了自激式推挽双变压器,1964年美国科学家们提出取消工频变压器的串联开关电源的设想,这对电源向体积和重量的下降获得了一条根本的途径。到了1969年由于大功率硅晶体管的耐压提高,二极管反向恢复时间的缩短等元器件改善,终于做成了25千赫的开关电源。
  目前,开关电源以小型、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备等几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。目前市场上出售的开关电源中采用双极性晶体管制成的100kHz、用MOS-FET制成的500kHz电源,虽已实用化,但其频率有待进一步提高。要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。然而,开关速度提高后,会受电路中分布电感和电容或二极管中存储电荷的影响而产生浪涌或噪声。这样,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。其中,为防止随开关启-闭所发生的电压浪涌,可采用R-C或L-C缓冲器,而对由二极管存储电荷所致的电流浪涌可采用非晶态等磁芯制成的磁缓冲器。不过,对1MHz以上的高频,要采用谐振电路,以使开关上的电压或通过开关的电流呈正弦波,这样既可减少开关损耗,同时也可控制浪涌的发生。这种开关方式称为谐振式开关。目前对这种开关电源的研究很活跃,因为采用这种方式不需要大幅度提高开关速度就可以在理论上把开关损耗降到零,而且噪声也小,可望成为开关电源高频化的一种主要方式。当前,世界上许多国家都在致力于数兆Hz的变换器的实用化研究。


第二章、设计思路
2.1开关型稳压电源电路的基本组成
开关稳压电路具有许多优点:开关管的损耗很小,电路效率高,一般可达70%~85%,甚至高于90%;特别是可省去电源变压器,构成无工频变压器开关电源,体积小、重量轻、利于直流电源小型化;稳压范围宽,当电网电压在130~265V变化,且负载电流作较大幅度变化时,都能达到良好的稳压效果;利用控制开关可获得一路输入多路输出以及同极性或反极性输出等;利用输出隔离变压器可得到低压大电流或高压小电流稳压电源;应用灵活性高、适应范围广;输出电压维持时间长,交流输入电压关断后几十ms内仍有直流电压输出。
分类方式 分成类型
开关调整管驱动方式 自激式和他激式两大类,在自激式基础上引入同步信号,可构成同步式开关稳压电路。
稳压的控制方式 脉冲宽度调制型和脉冲频率调制型,或两者结合,构成混合调制型
功率开关电路的结构形式  降压型,升压型,反向型和变压器型


2.2开关电源的原理

2.2.1高频开关电源由以下几个部分组成:
一、主电路
   从交流电网输入、直流输出的全过程,包括:
   1、输入滤波器:其作用是将电网存在的杂波过滤,同时也阻碍本机产生的杂波反馈到公共电网。
   2、整流与滤波:将电网交流电源直接整流为较平滑的直流电,以供下一级变换。
   3、逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分,频率越高,体积、重量与输出功率之比越小。
   4、输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。
二、控制电路
    一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。
三、检测电路
    除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。
四、辅助电源
    提供所有单一电路的不同要求电源。(已经在集成电路里面)。


2.2.2开关控制稳压原理
开关K(三极管)以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。在AB间的电压平均值EAB可用下式表示:
                 EAB=TON/T*E
式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。
    由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(Time Ratio Control,缩写为TRC)。
    按TRC控制原理,有三种方式:
    一、脉冲宽度调制(Pulse Width Modulation,缩写为PWM)
开关周期恒定,通过改变脉冲宽度来改变占空比的方式。
    二、脉冲频率调制(Pulse Frequency Modulation,缩写为PFM)
导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。
    三、混合调制
导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。




2.2.3开关电源的抗干扰设计
开关电源具有线性电源无可比拟的优点:体积小、重量轻、效率高等。但是,功率密度的增大和频率的提高所产生的电磁干扰对电源本身及周围电子设备的正常工作都造成威胁。开关变换器本身具有一定的开关噪声,从而会从电源的输入端产生差模与共模干扰信号。电磁干扰的产生是由开关电源本身的特点所决定的,是难以避免的,关键是如何采取有效的措施来减小其干扰程度。
   电磁兼容(EMC)是指在有限的空间、时间和频率范围内各种电器设备共存而不引起性能下降。它包括电磁干扰(EMI)和电磁敏感(EMS)两方面的内容。EMI是指电器产品向外发出干扰,EMS是指电器产品抵抗电磁干扰的能力。一台具备良好电磁兼容性能的设备应既不受周围电磁噪声的影响,也不对周围环境造成电磁干扰。
a.开关电源的EMC设计
开关电源的EMC设计应考虑以下几个方面:
1)滤波器
2)高频变压器
3)软开关技术
4)共模干扰的有源抑制
5)印制线路板布线的EMC设计
b.EMC的设计措施
1.滤波器
滤波是一种抑制传导干扰的方法。例如在电源输入端接上滤波器,可以抑制来自电网的噪声对电源本身的侵害,也可以抑制由开关电源产生并向电网反馈的干扰。电源滤波器作为抑制电源线传导干扰的重要单元,在设备或系统的电磁兼容设计中具有极其重要的作用。它不仅可抑制传输线上的传导干扰,同时对传输线上的辐射发射也具有显著的抑制效果。在滤波电路中,选用穿心电容、三端电容、铁氧体磁环,能够改善电路的滤波特性。适当的设计或选择合适的滤波器,并正确地安装滤波器是抗干扰技术的重要组成部分,具体措施如下:
1.1在交流电输入端加装电源滤波器,其电路如图1所示。图中Ld、Cd用于抑制差模噪声,一般取Ld为100~700μH,Cd取1~10μF。Lc、Cc用于抑制共模噪声,可根据实际情况加以调整。
所有电源滤波器都必须接地(厂家特别说明允许不接地的除外),因为滤波器的共模旁路电容必须在接地时才起作用。一般的接地方法是除了将滤波器与金属外壳相接之外,还要用较粗的导线将滤波器外壳与设备的接地点相连。接地阻抗越低滤波效果越好。
滤波器尽量安装在靠近电源入口处。滤波器的输入及输出端要尽量远离,避免干扰信号从输入端直接耦合到输出端。
1.2在电源输出端加输出滤波器。加装高频电容,加大输出滤波电感的电感量及滤波电容的容量,可以抑制差模噪声。如果把多个电容并联,则效果会更好。
2.高频变压器
在高频变压器的原边、副边、开关管的C、E极间以及在输出整流二极管上加装RC吸收网络。
3.软开关技术
软开关技术的应用有助于电磁干扰的降低,这是因为功率MOSFET、IGBT在零电压情况下导通和零电流情况下关断,且快速恢复二极管也是软关断,可以减小功率电路中功率器件的di/dt和dv/dt,从而可以减小EMI电平。通过实验证明软开关技术只在抑制纹波的高次谐波上有一定效果。
4.共模干扰的有源抑制技术
共模干扰有源抑制技术是一种从噪声源采取措施来抑制共模干扰的方法。这种方法的思路是设法从主电路中取出一个与导致EMI的主要开关电压波形完全反相的补偿EMI噪声电压,并用它去平衡原开关电压的影响。
5.印制线路板
实践证明,印制板的元器件布置和布线设计对开关电源EMC性能有极大的影响,在高频开关电源中,由于印制板上既有电平为±5V、±15V的小信号控制线,又有高压电源母线,同时还有一些高频功率开关、磁性元件,如何在印制板有限的空间内合理地安排元器件位置,将直接影响到电路中各元器件自身的抗干扰性和电路工作的可靠性。
5.1导线阻抗的影响
通过分析印制导线的特性阻抗,来选取印制导线的放置方式、长度、宽度以及布局方式。
单根导线的特性阻抗由直流电阻R和自感L组成

式中:l—导线长度;
b—导线宽度。
显然,印制线l越短,直流电阻R就越小;同时增加印制线的宽度和厚度也可降低直流电阻R。
从式(2)可看出,印制线长度l越短,自感L就越小,而且增加印制线的宽度b也可降低自感L。而多根印制线的特性阻抗除由直流电阻R和自感L组成外,还有互感M的影响,而互感M除受印制线的长度和宽度影响外,印制线之间距也起着重要的作用。

式中:s—两线之间的距离,增大两线的间距可减少互感。
针对以上现象,在设计印制电路板时,应尽量降低电源线和地线的阻抗,因为电源线、地线和其它印制线都有电感,当电源电流变化较大时,将会产生较大的压降,而地线压降是形成公共阻抗干扰的重要因素,所以应尽量缩短地线,也可尽量加粗电源线和地线线条。
在双面印制板设计中,除尽可能地加粗电源线和地线线条之外,还应在地线和电源线之间安装高频特性好的去耦电容。另外,切忌两条印制信号线平行走线。如果平行走线无法避免,可通过以下方法来补救:1)在两条信号线之间加一条地线,以起屏蔽作用;
5.2尽量拉开两条平行信号线之间的距离,以降低两线之间电磁场的影响;
5.3使两条平行的信号线流过的电流方向相反。(目的在于减小感应磁通)
5.4元器件的布局
在设计印制电路板时,通常干扰源和受扰体由于受到工作条件的限制而难以避免。这时,应尽量将相互关联的元器件摆放在一起以避免因器件离的太远而造成印制线过长所带来的干扰;再者将输入信号和输出信号尽量放置在引线端口附近,以避免因耦合路径而产生的干扰。
6.结构上的措施
屏蔽是解决电磁兼容问题的重要且有效的手段之一。目的是切断电磁波的传播途径。大部分电磁兼容问题都可以通过电磁屏蔽来解决,用电磁屏蔽的方法解决电磁干扰问题不会影响电路的正常工作。
对于开关电源来说,主要是做好机壳屏蔽,高频变压器屏蔽,开关管和整流二极管的屏蔽。
7.总结
通过采取以上措施,可大大减小电源的纹波,我们设计的加固机电源纹波+噪声由原来的150~200mV减小到现在的15~30mV。使开关电源的适用范围更加广泛。
第三章、硬件设计 ——恒流控制型脉宽调制(PWM)开关稳压电源
3.1电源设计
3.1.1元件清单
PathDesignatorFootPrintPartType
原理图.SchD306DIODE0.4DIODE
原理图.SchIC301DIP-8UC3842BN(8)
原理图.SchD305DIODE0.4DIODE
原理图.SchQ301TO220VSK1995
原理图.SchU1DIP4PC817
原理图.SchC327RB.2/.425V / 220U
原理图.SchQ302TO-92B9014
原理图.SchU/TO-92BMC7912CT(3)
原理图.SchL305RB.2/.4INDUCTOR2
原理图.SchL306RB.2/.4*
原理图.SchL304RB.2/.4*
原理图.SchIC302TO-92BTL431BILP(3)
原理图.SchD308DIODE0.7DIODE
原理图.SchD309DIODE0.7DIODE
原理图.SchC313RAD0.2221
原理图.SchD311DIODE0.424V
原理图.SchC306RB.5/1.0400V/100U
原理图.SchC320RB.3/.616V /470U
原理图.SchIC305TO220VSLM317T(3)
原理图.SchIC304TO220VSLM317T(3)
原理图.SchC321RB.3/.616V/1000U
原理图.SchL307AXIAL0.5*
原理图.SchC311RAD0.2104
原理图.SchC307RAD0.4472 / 1KV
原理图.SchC310RAD0.2103
原理图.SchD307DIODE0.4DIODE
原理图.SchC312RAD0.2392
原理图.SchC314RAD0.2102
原理图.SchC325RB.3/.616V /1000U
原理图.SchC309RAD0.2104
原理图.SchC315RAD0.2102
原理图.SchD310DIODE0.4DIODE
原理图.SchC330RAD0.2104
原理图.SchC308RB.2/.425V /100U
原理图.SchC333RAD0.2104
原理图.SchC329RAD0.2104
原理图.SchR302AXIAL0.327K
原理图.SchR301AXIAL0.891K / 2W
原理图.SchR309AXIAL0.37.5K
原理图.SchR304AXIAL0.330K
原理图.SchR308AXIAL0.310K
原理图.SchR307AXIAL0.310K
原理图.SchR313AXIAL0.80.5 / 2W
原理图.SchR312AXIAL0.31K
原理图.SchR305AXIAL0.37.5K
原理图.SchR316AXIAL0.3330
PathDesignatorFootPrintPartType
原理图.SchR303AXIAL0.41
原理图.SchR323AXIAL0.35.1
原理图.SchR310AXIAL0.322
原理图.SchR320AXIAL0.347
原理图.SchR314AXIAL0.460
原理图.SchR332AXIAL0.3100
原理图.SchC323RAD0.4104
原理图.SchR330AXIAL0.3120
原理图.SchR331AXIAL0.3200
原理图.SchC304RAD0.3222
原理图.SchC303RAD0.3222
原理图.SchC305RAD0.3222
原理图.SchR333AXIAL0.3300
原理图.SchR322AXIAL0.3470
原理图.SchR321AXIAL0.3470
原理图.SchC317RAD0.4472
原理图.SchL301QD*
原理图.SchL302AXIAL0.4*
原理图.SchL303AXIAL0.4*
原理图.SchC301RAD0.40.47U
原理图.SchC302RAD0.40.47U
原理图.SchR315AXIAL0.31.2K
原理图.SchF301AXIAL0.71.5A
原理图.SchC331RB.3/.616V / 100U
原理图.SchC324RB.3/.616V /100U
原理图.SchC326RB.3/.616V /100U
原理图.SchR317AXIAL0.31K
原理图.SchR318AXIAL0.31K
原理图.SchR319AXIAL0.31K
原理图.SchC322RAD0.41U
原理图.SchC319RB.3/.625V / 22U
原理图.SchC318RB.3/.650V /100U
原理图.SchD301DIP6BRIDGE1
原理图.SchT301BCKCOMPONENT_1
原理图.SchTRAD0.3NTC


3.1.2芯片简介
a.UC3842






图1 UC3842的内部框图





UC3842是一种高性能的固定频率电流型控制器, 是专为脱线式直流变换电路设计的, 其内部结构如图1所示, 封装形式见下图。
它集成了振荡器、有温度补偿的高增益误差放大器、电流检测比较器、图腾柱输出电路、输入和基准欠电压锁定电路及PWM锁存器电路。该芯片主要有以下性能:
(1) 可调整振荡器的放电电流以产生精确的占空比;
(2) 最高开关频率可达500kHz;
(3) 带锁定的PWM ( Pulse Width Modulation) , 可以实现逐个脉冲的电流限制;
(4) 具有内部可调整的参考电源, 可以进行欠压锁定;
(5) 图腾柱输出电路能够提供大电流输出, 输出电流可达1A , 可直接对MO SFET进行驱动;
(6) 带滞环的欠压锁定电路可有效地防止电路在阈值电压附近工作时的振荡;
(7) 起动电流和工作电流低, 启动电流小于1mA , 正常工作电流为15mA;
(8) 可直接与MO TOROLA的SEN SEFET产品接口。
b.LM317
LM317是常见的可调集成稳压器,最大输出电流为2.2A,输出电压范围为1.25~37V。其接法如下:
1,2脚之间为1.25V电压基准。为保证稳压器的输出性能,R1应小于240欧姆。改变R2阻值即可调整稳压电压值。D1,D2用于保护LM317。Uo=(1+R2/R1)*1.25
c.TL431


d.PC817
3.1.3 UC3842的内部结构和特点
  UC3842是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片。
  UC3842为8脚双列直插式封装,其内部原理框图如图1所示。主要由5.0V基准电压源、用来精确地控制占空比调定的振荡器、降压器、电流测定比较器、PWM锁存器、高增益E/A误差放大器和适用于驱动功率MOSFET的大电流推挽输出电路等构成。端1为COMP端;端2为反馈端;端3为电流测定端;端4接Rt、Ct确定锯齿波频率;端5接地;端6为推挽输出端,有拉、灌电流的能力;端7为集成块工作电源电压端,可以工作在8~40V;端8为内部供外用的基准电压5V,带载能力50mA。

3.1.4举例说明工作过程

1、启动过程
  首先由电源通过启动电阻R?1提供电流给电容C2充电,当C2电压达到UC3842的启动电压门槛值16V时,UC3842开始工作并提供驱动脉冲,由6端输出推动开关管工作,输出信号为高低电压脉冲。高电压脉冲期间,场效应管导通,电流通过变压器原边,同时把能量储存在变压器中。根据同名端标识情况,此时变压器各路副边没有能量输出。当6脚输出的高电平脉冲结束时,场效应管截止,根据楞次定律,变压器原边为维持电流不变,产生下正上负的感生电动势,此时副边各路二极管导通,向外提供能量。同时反馈线圈向UC3842供电。UC3842内部设有欠压锁定电路,其开启和关闭阈值分别为16V和10V,如图3所示。在开启之前,UC3842消耗的电流在1mA以内。电源电压接通之后,当7端电压升至16V时UC3842开始工作,启动正常工作后,它的消耗电流约为15mA。因为UC3842的启动电流在1mA以内,设计时参照这些参数选取R1,所以在R1上的功耗很小。
当然,若VCC端电压较小时,在R1上的压降很小,全部供电工作都可由R1降压后来完成。但是,通常情况下,VCC端电压都比较大,这样完全通过R1来提供正常工作电压就会使R1自身功耗太大,对整个电源来说效率太低。一般来说,随着UC3842的启动,R1的工作也就基本结束,余下的任务交给反馈绕组,由反馈绕组产生电压来为UC3842供电。故R1的功率不必选得很大,1W、2W就足够了。笔者认为,虽然理论上UC3842启动电流在1mA以内,但实际应用时,按1.6~2.0mA设计则工作比较便利。即当VCC端电压为U伏时
2、稳压过程
  从图2中可知,当场效应管导通时,整流电压加在变压器T初级绕组Np上的电能变成磁能储存在变压器中,在场效应管导通结束时,Np绕组中电流达到最大值Ipmax,根据法拉第电磁感应定律:
  
式中:E—整流电压;Lp—变压器初级绕组电感;Ton—场效应管导通时间。
  在场效应管关闭瞬间,变压器次级绕组放电电流为最大值Ismax,若忽略各种损耗应为:
  
式中:n—变压器变比,n=Np/Ns,Np、Ns为变压器初、次级绕组匝数。
  高频变压器在场效应管导通期间初级绕组储存的能量与场效应管关闭期间次级绕组释放的能量相等:
  
式中:Ls—变压器次级绕组电感;Uo—输出电压;Toff—场效应管关闭时间。
 ?

  上式说明,输出电压Uo与Ton成正比,与匝比n及Toff成反比。比如,由于电源电压变化或负载变化而引起输出电压降低时,反馈线圈的输出电压则会变低,从而使2端电压变低,则脉宽调制器会相应的增大输出PWM波形的占空比,使大功率晶体管导通的时间变长;反之,当电源电压变化或负载变化而引起输出电压升高时,则脉宽调制器会相应的减小PWM输出脉冲波形的占空比,使大功率晶体管导通的时间变短,从而维持输出电压为一恒定值。
  UC3842为固定工作频率脉宽调制方式,输出电压或负载变化时仅调整占空比,控制场效应管的导通时间。反馈电压输入2脚,此脚电压与内部2.5V基准进行比较,产生控制电压,从而控制脉冲宽度;输出脉冲的频率由4脚外接定时电阻Rt及定时电容Ct决定,f
  Rt的单位取kΩ,Ct取μF。3脚为电感电流传感器端,当取样超过1V时,缩小导通脉宽,使电源处于间隙工作状态;6脚,输出端,内部为图腾柱式,上升、下降时间仅50ns,驱动能力为±1A;7脚,供电输入,起振后工作电压为10~13V,低于10V停止工作,功耗为15mW;8脚,内部基准5V(50mA)。
3、过流保护原理
  当负载电流超过额定值或短路时,场效应管电流增加,R9上的电压反馈至3脚(电压大于1V),通过内部电流放大器使导通宽度变窄,输出电压下降,直至使UC3842停止工作,没有触发脉冲输出,使场效应管截止,达到保护功率管的目的。短路现象消失后,电源自动恢复正常工作。
4、过压保护原理
  当因某种原因使输出电压过高时,由反馈绕组形成的电压也高,从而使2脚的电压过高,内部保护电路起动,使6脚输出脉冲高电平时间变短,或不输出高电平使开关管截止。
5、开关管保护电路
  由D3、R10、C1及R11、C14、D4构成,消除由变压器漏感产生的反峰电压,从而使开关工作电压不至于太高而毁坏。

3.1.5参数设计
一、多路输出预定技术指标见表1,
AC输入
160V~ 256V (50Hz)







U 01 (V)
+ 5 (±5% )

I01 (A)
1~ 4

P01 (W)
20




出(2例)第


U 02 (V)
+ 5 (±3% )

I02 (A)0. 1~ 0. 3
P02 (W)3. 6



U 03 (V)
+ 12 (±3% )

I03 (A)0. 1~ 0. 3
P03 (W)3. 6
总输出P0  (W )50
表1 多路输出技术指标
3.2设计中的注意事项
3.2.1起动电路的设计
  电路如图2所示,电容C2储存的能量要能满足电源开始正常 工作的需要,使得UC3842第7脚有稳定、充足的输入供给。即电容C2的放电时间要大于UC3842输出脉冲的高电平持续时间。否则,电源将出现打嗝现象。因此,电容C2的容量和质量的选取非常重要。我在实际设计过程中,C2曾用100μF铝电解电容,经常发现电源打嗝;测量反馈端电压,总是太低,以至于反馈端的整流二极管都没有工作,说明反馈 端电压幅度不够。原因在于C2容量不够,不能提供足够的能量来使3842充分工作,因此 ,容量最好在100μF以上。
3.2.2反馈绕组的设计
  当UC3842启动后,若反馈绕组不能提供足够的UF,电路就会不停地起动 ,出现打嗝现象。另外,根据我的试验,若UF大于17.5V时, 也会引起UC3842工作异常,导致输出脉冲占空比变小,输出电压变低。故而反馈绕组匝数的选取及其缠绕是非常重要的,一般可按13~15V设计,使UC3842正常工作时,7脚的电压维持 在13V左右。
3.3.3用UC3842设计开关电源的几个技巧
用UC3842做的开关电源的典型电路见下图1。过载和短路保护,一般是通过在开关管的源极串一个电阻(R4),把电流信号送到3842的第3脚来实现保护。当电源过载时,3842保护动作,使占空比减小,输出电压降低,3842的供电电压Vaux也跟着降低,当低到3842不能工作时,整个电路关闭,然后靠R1、R2开始下一次启动过程。这被称为“打嗝”式(hiccup)保护。在这种保护状态下,电源只工作几个开关周期,然后进入很长时间(几百ms到几s)的启动过程,平均功率很低,即使长时间输出短路也不会导致电源的损坏。由于漏感等原因,有的开关电源在每个开关周期有很大的开关尖峰,即使在占空比很小时,辅助电压Vaux也不能降到足够低,所以一般在辅助电源的整流二极管上串一个电阻(R3),它和C1形成RC滤波,滤掉开通瞬间的尖峰。仔细调整这个电阻的数值,一般都可以达到满意的保护。使用这个电路,必须注意选取比较低的辅助电压Vaux,对3842一般为13~15V,使电路容易保护。


图1是使用最广泛的电路,然而它的保护电路仍有几个问题:
1. 在批量生产时,由于元器件的差异,总会有一些电源不能很好保护,这时需要个别调整R3的数值,给生产造成麻烦;
2. 在输出电压较低时,如3.3V、5V,由于输出电流大,过载时输出电压下降不大,也很难调整R3到一个理想的数值;
3. 在正激应用时,辅助电压Vaux虽然也跟随输出变化,但跟输入电压HV的关系更大,也很难调整R3到一个理想的数值。
这时如果采用辅助电路来实现保护关断,会达到更好的效果。辅助关断电路的实现原理:在过载或短路时,输出电压降低,电压反馈的光耦不再导通,辅助关断电路当检测到光耦不再导通时,延迟一段时间就动作,关闭电源。
  






图2、3、4是常见的电路。图2采取拉低第1脚的方法关闭电源。图3采用断开振荡回路的方法。图4采取抬高第2脚,进而使第1脚降低的方法。在这3个电路里R3电阻即使不要,仍能很好保护。注意电路中C4的作用,电源正常启动,光耦是不通的,因此靠C4来使保护电路延迟一段时间动作。在过载或短路保护时,它也起延时保护的左右。在灯泡、马达等启动电流大的场合,C4的取值也要大一点。


第四章、硬件的相关测试
4.1电源标准
    国际电工委员会(IEC)已经制定了一些有关电源的标准,如直流稳定电源标准:IEC478.1-1974《直流输出稳定电源术语》;IEC478.2-1986《直流输出稳定电源额定值和性能》;IEC478.3-1989《直流输出稳定电源传导电磁干扰的基准电平和测量》;IEC478.4-1976《直流输出稳定电源除射频干扰外的试验方法》;IEC478.5-1993《直流输出稳定电源电抗性近场磁场分量的测量》。这一套标准颁布实施的时间较早,我国相应的国家标准尚未颁布。而有关直流稳定电源的电子行业标准SJ2811.1-87《通用直流稳定电源术语及定义、性能与额定值》、SJ2811.2-87《通用直流稳定电源测试方法》已发布实施13年了。长期以来,这两份标准对我国直流稳定电源的科研生产起到了很大的作用。
    国际电工委员会(IEC)于1980年颁布了IEC686-80《交流输出稳定电源》,参照该标准制定的我国国家标准GB/T《交流输出稳定电源通用规范》已经报批完成,该标准中的术语、技术要求及试验方法参照了IEC686,除此之外,又增加了环境试验要求及试验方法、质量评定程序、标志、包装、运输、贮存等要求,使其成为一个能指导交流电源研制全过程的一个完整的技术规范。
    1994年,原电子工业部颁布了电子行业标准SJ/T10541-94《抗干扰型交流稳压电源通用技术条件》和SJ/T10542-94《抗干扰型交流稳压电源测试方法》,该标准由中国电源学会交流稳定电源专业委员会及国内相关的电源生产厂、所及检测机构等负责编制,对普通型和抗干扰型交流稳压电源的技术要求、环境要求及相应的试验方法、质量检验规则等都做了详细的规定。该标准发布实施以来,在交流稳压技术领域得到了广泛的应用。
    其它一些标准,如与IEC443-1974《测量用稳定电源装置》对应的我国电子工业部标准SJ/Z9035-87《测量用稳定电源装置》等也在一定范围内得到了应用。
     近些年兴起的开关电源及不间断电源,我国也制定了相应的国家标准,如GB/T14714-93《微小型计算机系统设备用开关电源通用技术条件》、GB/T14715-93《信息技术设备用不间断电源通用技术条件》等,在相关的领域中应用也十分广泛。
     原四机部标准SJ1670-80《电子设备电源名词术语》距今已20年了,许多名词术语的解释都已与现行的标准产生了矛盾,因此,今年信息产业部标准化所组织对该标准进行了修订,保留了一些原标准中仍适用的术语,对该标准的分类方法进行了较大的调整,这次修订标准的宗旨就是增强标准的适用性,因此,将根据现代电源领域中最常用的几类电源进行分类,给出各自的术语及定义,通用的部分单列一章,每一章中的术语及定义都参照相应的国际标准及国家标准,今年底该项标准上报完成。
4.2开关电源的测试:
    良好的开关电源必须符合所有功能规格、保护特性、安全规范(如UL、CSA、VDE、DEMKO、SEMKO,长城等等之耐压、抗燃、漏电流、接地等安全规格)、电磁兼容能力(如FCC、CE等之传导与辐射干扰)、可靠性(如老化寿命测试)、及其他之特定需求等。测试结果如下:
4.2.1输出电压调整:     
    当制造开关电源时,第一个测试步骤为将输出电压调整至规格范围内。此步骤完成后才能确保后续的规格能够符合。通常,当调整输出电压时,将输入交流电压设定为正常值(115Vac或230Vac),并且将输出电流设定为正常值或满载电流,然后以数字电压表测量电源供应器的输出电压值并调整其电位器(VR)直到电压读值位于要求之范围内。
4.2.2电源调整率:
    电源调整率的定义为电源供应器于输入电压变化时提供其稳定输出电压的能力。此项测试系用来验证电源供应器在最恶劣之电源电压环境下,如夏天之中午(因气温高,用电需求量最大)其电源电压最低;又如冬天之晚上(因气温低,用电需求量最小)其电源电压最高。在前述之两个极端下验证电源供应器之输出电源之稳定度是否合乎需求之规格。 为精确测量电源调整率,需要下列之设备:

·能提供可变电压能力的电源,至少能提供待测电源供应器的最低到最高之输入电压范围,(KIKUSUI PCR系列电源能提供0--300VAC 5-1000Hz的稳定交流电源,   0---400V DC的直流电源)。
·一个均方根值交流电压表来测量输入电源电压,众多的数字功率计能精确计量V A W PF。
·一个精密直流电压表,具备至少高于待测物调整率十倍以上,一般应用5位以上高精度数字表。
·连接至待测物输出的可变电子负载。

*测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,分别于低输入电压(Min),正常输入电压(Normal),及高输入电压(Max)下测量并记录其输出电压值。

电源调整率通常以一正常之固定负载(Nominal Load)下,由输入电压变化所造成其输出电压偏差率(deviation)的百分比,如下列公式所示:

       V0(max)-V0(min) / V0(normal)

电源调整率亦可用下列方式表示之:于输入电压变化下,其输出电压之偏差量须于规定之上下限范围内,即输出电压之上下限绝对值以内。 
4.2.3负载调整率:
    负载调整率的定义为开关电源于输出负载电流变化时,提供其稳定输出电压的能力。此项测试系用来验证电源在最恶劣之负载环境下,如个人电脑内装置最少之外设卡且硬盘均不动作(因负载最少,用电需求量最小)其负载电流最低和个人电脑内装置最多之外设卡且硬盘在动作(因负载最多,用电需求量最大)其负载电流最高的两个极端下验证电源供应器之输出电源之稳定度是否合乎需求之规格。

*所需的设备和连接与电源调整率相似,唯一不同的是需要精密的电流表与待测电源供应器的输出串联。示:
测试步骤如下:于待测电源供应器以正常输入电压及负载状况下热机稳定后,测量正常负载下之输出电压值,再分别于轻载(Min)、重载(Max)负载下,测量并记录其输出电压值(分别为Vmax与Vmin),负载调整率通常以正常之固定输入电压下,由负载电流变化所造成其输出电压偏差率的百分比,如下列公式所示:        V0(max)-V0(min) / V0(normal)
负载调整率亦可用下列方式表示:于输出负载电流变化下,其输出电压之偏差量须于规定之上下限电压范围内,即输出电压之上下限绝对值以内。
 
4.2.4综合调整率:
    综合调整率的定义为电源供应器于输入电压与输出负载电流变化时,提供其稳定输出电压的能力。这是电源调整率与负载调整率的综合,此项测试系为上述电源调整率与负载调整率的综合,可提供对电源供应器于改变输入电压与负载状况下更正确的性能验证。综合调整率用下列方式表示:于输入电压与输出负载电流变化下,其输出电压之偏差量须于规定之上下限电压范围内(即输出电压之上下限绝对值以内)或某一百分比界限内。
4.2.5输出杂讯(PARD):
    输出杂讯(PARD)系指于输入电压与输出负载电流均不变的情况下,其平均直流输出电压上的周期性与随机性偏差量的电压值。输出杂讯是表示在经过稳压及滤波后的直流输出电压上所有不需要的交流和噪声部份(包含低频之50/60Hz电源倍频信号、高于20 KHz之高频切换信号及其谐波,再与其他之随机性信号所组成)),通常以mVp-p峰对峰值电压为单位来表示。 一般的开关电源的规格均以输出直流输出电压的1%以内为输出杂讯之规格,其频宽为20Hz到20MHz(或其他更高之频宽如100MHz等)。 开关电源实际工作时最恶劣的状况(如输出负载电流最大、输入电源电压最低等),若电源供应器在恶劣环境状况下,其输出直流电压加上杂讯后之输出瞬时电压,仍能够维持稳定的输出电压不超过输出高低电压界限情形,否则将可能会导致电源电压超过或低于逻辑电路(如TTL电路)之承受电源电压而误动作,进一步造成死机现象。

例如5V输出,其输出杂讯要求为50mV以内(此时包含电源调整率、负载调整率、动态负载等其他所有变动,其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作)。在测量输出杂讯时,电子负载的PARD必须比待测之电源供应器的PARD值为低,才不会影响输出杂讯之测量。同时测量电路必须有良好的隔离处理及阻抗匹配,为避免导线上产生不必要的干扰、振铃和驻波,一般都采用双同轴电缆并以50Ω于其端点上,并使用差动式量测方法(可避免地回路之杂讯电流),来获得正确的测量结果,日本计测KEISOKU GEIKEN的PARD测试仪具备此种功能。
4.2.6输入功率与效率:
      电源供应器的输入功率之定义为以下之公式:
      True Power = Pav(watt) = V1 Ai dt = Vrms x Arms x Power Factor
即为对一周期内其输入电压与电流乘积之积分值,需注意的是Watt≠VrmsArms而是Watt=VrmsArmsxP.F.,其中P.F.为功率因素(Power Factor),通常电源供应器的功率因素在0.6~0.7左右,而大功率之电源供应器具备功率因素校正器者,其功率因素通常大于0.95,当输入电流波形与电压波形完全相同时,功率因素为1,并依其不相同之程度,其功率因素为1~0之间。

电源供应器的效率之定义为:
         ΣVout x lout / True Power (watts)
即为输出直流功率之总和与输入功率之比值。通常个人电脑用电源供应器之效率为65%~80%左右。效率提供对电源供应器正确工作的验证,若效率超过规定范围,即表示设计或零件材料上有问题,效率太低时会导致散热增加而影响其使用寿命。由于近年来对于环保及能源消耗愈来愈重视,如电脑能源之星「Energy Star」对开关电源之要求:于交流输入功率为30W时,其效率需为60%以上(即此时直流输出功率必须高于18W);又对于ATX架构开关电源于直流失能(DC Disable)状态其输入功率应不大于5W。因此交流功率测试仪表需要既精确又范围宽广,才能合乎此项测试之需求。
4.2.7动态负载或暂态负载:
    一个定电压输出的电源,于设计中具备反馈控制回路,能够将其输出电压连续不断地维持稳定的输出电压。由于实际上反馈控制回路有一定的频宽,因此限制了电源供应器对负载电流变化时的反应。若控制回路输入与输出之相移于增益(Unity Gain)为1时,超过180度,则电源供应器之输出便会呈现不稳定、失控或振荡之现象。实际上,电源供应器工作时的负载电流也是动态变化的,而不是始终维持不变(例如硬盘、软驱、CPU或RAM动作等),因此动态负载测试对电源供应器而言是极为重要的。可编程序电子负载可用来模拟电源供应器实际工作时最恶劣的负载情况,如负载电流迅速上升、下降之斜率、周期等,若电源供应器在恶劣负载状况下,仍能够维持稳定的输出电压不产生过高激(Overshoot)或过低(Undershoot)情形,否则会导致电源之输出电压超过负载元件(如TTL电路其输出瞬时电压应介于4.75V至5.25V之间,才不致引起TTL逻辑电路之误动作)之承受电源电压而误动作,进一步造成死机现象。电源良好/失效时间(Power Good、Power Fail或Pok)
    电源良好信号,简称PGS(Power Good Signal或Pok High),是电源送往电脑系统的信号,当其输出电压稳定后,通知电脑系统,以便做开机程序之C而电源失效信号(Power Fail或Power Low)是电源供应器表示其输出电压尚未达到或下降超过于一正常工作之情况。 以上通常由一「PGS」信号之逻辑改变来表示,逻辑为「1或High」时,表示为电源良好(Power Good),而逻辑为「0或Low」时,表示为电源失效(Power Fail), 电源的电源良好(Power Good)时间为从其输出电压稳定时起到PGS信号由0变为1的时间,一般值为100ms到2000ms之间。 电源的电源失效(Power Fail)时间为从PGS信号由1变为0的时间起到其输出电压低于稳压范围的时间,一般值为1ms以上。日本计测KEISOKU GEIKEN的电子负载可直接测量电源良好与电源失效时间,并可设定上下限,作为是否合格的判别。
4.2.8启动时间(Set-Up Time)与保持时间(Hold-Up Time):
    启动时间为电源供应器从输入接上电源起到其输出电压上升到稳压范围内为止的时间,以一输出为5V的电源供应器为例,启动时间为从电源开机起到输出电压达到4.75V为止的时间。
    保持时间为电源供应器从输入切断电源起到其输出电压下降到稳压范围外为止的时间,以一输出为5V的电源供应器为例,保持时间为从关机起到输出电压低于4.75V为止的时间,一般值为17ms或20ms以上,以避免电力公司供电中于少了半周或一周之状况下而受影响。
其他
·Power Up delay:+5/3.3V的上升时间(由10%上升到90%电压之时间)
·Remote ON/OFF Control:遥控「开」或「关」之控制
·Fan Speed Control/Monitor:散热风扇之转速「控制」及「监视」 
4.2.9保护功能测试:

过电压保护(OVP)测试
安全规格测试 电磁兼容(Electromagnetic Compliance)测试
可靠性(Reliability)测试
4.2.10其他测试

    当电源供应器的输出电压超过其最大的限定电压时,会将其输出关闭(Shutdown)以避免损坏负载之电路元件,称为过电压保护。过电压保护测试系用来验证电源供应器当出现上述异常状况时(当电源供应器内部之回授控制电路或零件损坏时,有可能产生异常之输出高电压),能否正确地反应。过电压保护功能对于一些对电压敏感的负载特别重要,如CPU、记忆体、逻辑电路等,因为这些贵重元件若因工作电压太高,超过其额定值时,会导致永久性的损坏,因而损失惨重。故该项设计尤为重要。
*短路保护测试
      当电源供应器的输出短路时,则电源供应器应该限制其输出电流或关闭其输出,以避免损坏。短路保护测试是验证当输出短路时(可能是配线连接错误,或使用电源之元件或零组件故障短路所致),电源供应器能否正确地反应。
过电流保护OCP测试
      当电源供应器的输出电流超过额定时,则电源供应器应该限制其输出电流或关闭其输出,以避免负载电流过大而损坏。又若电源供应器之内部零件损坏而造成较正常大的负载电流时,则电源供应器也应该关闭或限制其输出,以避免损坏或发生危险。过电流保护测试是验证当上述任一种状况发生时,电源供应器能否正确地反应。
过功率保护OPP测试
      当电源的输出功率(可为单一输出或多组输出)超过额定时,则电源应该限制其输出功率或关闭其输出,以避免负载功率过大而损坏或发生危险。又若电源内部零件损坏而造成较正常大的负载功率时,则电源也应该关闭或限制其输出,以避免损坏。过功率保护测试是验证当上述任一种状况发生时,电源能否正确地反应。 本项测试通常包含两组或数组输出功率之功率限制保护,因此较上述单一输出之保护测试(OVP、OCP、Short等)稍具变化。
4.3相关测量点的选择
为了检验电源的可靠性,我选择了几个重要的测量点。如图测量实例:


4.4示波器实际测量纹波系数(波形)
(1)二极管的反向恢复时间引起的干扰
高频整流回路中的整流二极管正向导通时有较大的正向电流流过,在其受反偏电压而转向截止时,由于PN结中有较多的载流子积累,因而在载流子消失之前的一段时间里,电流会反向流动,致使载流子消失的反向恢复电流急剧减少而发生很大的电流变化(di/dt)。
(2)开关管工作时产生的谐波干扰
功率开关管在导通时流过较大的脉冲电流。例如正激型、推挽型和桥式变换器的输入电流波形在阻性负载时近似为矩形波,其中含有丰富的高次谐波分量。当采用零电流、零电压开关时,这种谐波干扰将会很小。另外,功率开关管在截止期间,高频变压器绕组漏感引起的电流突变,也会产生尖峰干扰。
(3)交流输入回路产生的干扰
无工频变压器的开关电源输入端整流管在反向恢复期间会引起高频衰减振荡产生干扰。开关电源产生的尖峰干扰和谐波干扰能量,通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰;而谐波和寄生振荡的能量,通过输入输出线传播时,都会在空间产生电场和磁场。这种通过电磁辐射产生的干扰称为辐射干扰。
(4)其他原因
元器件的寄生参数,开关电源的原理图设计不够完美,印刷线路板(PCB)走线通常采用手工布置,具有很大的随意性,PCB的近场干扰大,并且印刷板上器件的安装、放置,以及方位的不合理都会造成EMI干扰。



第五章、设计总结
我设计的电源供电系统已经有电压输出,但经过长时间的试机仍有大量不足,如
IGBT管发热量大。
电源纹波系数没达到预期的标准。
EMI设计欠合理,等。
我加设了一电源接口(IDE产品专用),用其加载我的脆弱的硬盘,我看到了硬盘长时间工作正常,证明了我的设计还是成功的。
通用型的EMI滤波器通常很难设计,这是由于不同的功率变换器之间,由于拓扑、选用元件、PCB布版等原因,电磁环境水平相差很大,再加上阻抗匹配的问题,在很大程度上影响了滤波器的通用性,所以,滤波器的设计往往需要有针对性,并在实际调试中逐步修正。随着电子产品的电磁兼容性日益受到重视,抑制开关电源的EMI,提高电子产品的质量,使之符合有关标准或规范,已成为电子产品设计者越来越关注的问题。
UC3842是一种性能优良的电流控制型脉宽调制器。假如由于某种原因使输出电压升高时,脉宽调制器就会改变驱动信号的脉冲宽度,亦即占空比D,使斩波后的平均 值电压下降,从而达到稳压目的,反之亦然。UC3842可以直接驱动MOS管、IGBT等,适合于制作20~80W小功率开关电源。由于器件设计巧妙,由主电源电压直接启动,构成电路所需元件少,非常符合电路设计中“简洁至上”的原则。
该系统具有多级保护功能,在过流、过压、欠压等情况均能对系统实现可靠的保护。
由于时间以及学识水平等方面的限制,本开关电源供电系统的电路设计、结构设计、电磁兼容等方面还有许多工作要做,相信通过不断的努力和改进,我设计的开关电源供电系统会日趋完善
第六章、致谢
本次毕业设计能够顺利完成设计任务,除了指导教师的精心指导和本人的努力之外,还得益于许多老师和同学无私的帮助。在此,对我的指导教师——郭强导师,以及在整个系统的设计、调试过程中给予了我许多建议和帮助的陈震老师,还有给我充实理论基础的陈海燕、纪太成、李兴宁、谢钟志、朱健等老师;对吴进飞、孟程明、史克安等同学以及在本次设计过程中给予我关怀、帮助和鼓励的同学们:
表示衷心的感谢!
由于时间和知识水平所限,论文中还必然会有许多纰漏或错误之处,恳请各位老师和读者指正。

参考文献
[1]何希才.新型开关电源设计与应用[M].北京:科学出版社,2001.
[2]沙占友.新型开关电源的设计与应用[M].北京:电子工业出版社,2001.
[3] 陈绪胜。SH412高压开关电源的设计。微电子学,1996,26(2):75-78
[4] 戴晓明,李振国。新型高压开关电源的研制。原子能科学技术,2000,34(2):125-127
[5] 魏海明,扬兴瑶。实用电子电路500例[M],化学工业出版社,2000
[6] 沙占友.特种集成电源最新应用技术[M].北京:人民邮电出版社,2000.
[7]李香箐.电磁兼容性设计.仪表技术,1997(5)
[8]陈 穷.电磁兼容性工作设计手册.北京:国防工业出版社,1993
[9]诸邦田.电子电路实用抗干扰技术.北京:人民邮电出版社,1996
[10]谷树忠.双面印制版的电磁兼容性设计.电子工艺技术,2000(5)
[11]脉宽调制DC/DC全桥变换器的软开关技术,阮新波,严仰光,科学出版社,1999年9月,北京
[12]软开关功率变换器及其应用,王聪,科学出版社,2000年1月,北京
[13]Novel Zero-voltage and Zero-Current-Switching Full-Bridge PWM Converter Using a Simple Auxiliary Circuit, Jung-Goo Cho etl., IA, 1999(4):15-20
[14]高频功率电子学:直流-直流变换部分,蔡宣三,龚绍文,科学出版社,1993年,北京
[15]An Improved Full-Bridge Zero-Voltage-Transition PWM DC/DC Converter with Zero-Voltage/Zero-Current Switching of the Auxiliary Switches,Dong-Yun Lee,etl,IA,2000(2):558-566
[16]A Family of Continuous-Conducting-Mode Power Factor Correction Controllers Based on the General Pulse-Width-Modulator,Zheren Lai,etl,PE,1998(3):501-509
[17]Zero-Voltage and zero-current switching full bridge PWM converter using secondary active clamp,Jung-Guo Cho, etl, PE, 1998(4):601-607
[18]1.6kw,110kHz dc/dc converter optimized for IGBT’s, PE, 1996(3):18-25
[19]Zero-voltage and zero-current full bridge PWM converter for high power applications, Jung-Guo Cho, PESC 1994, 102-108
[20]An improved phase-shifted zero-voltage and zero-current switching PWM converter, Ruan Xinbo,etl,APEC 1998,811-815
[21]开关稳压电源,叶治政,叶靖国,高等教育出版社,1989
[22]通信用高频开关电源,张廷鹏等,人民邮电出版社,1997年9月
[23]新型开关电源及其应用,何希才,人民邮电出版社,1996年5月
[24]开关式稳压器的设计技术,[日]长谷川彰,科学出版社,1989年9月
[25]程控数字通信系统基础电源设备,徐曼珍,人民邮电出版社,1995年11月
[26]UNITRODE Product&Applications Handbook,1995-1996
[27]电力电子技术,丁道宏,航空工业出版社,1992
[28]Unity power factor single phase power conditioning , K. K. Sen and A. E. Emanuel, PESC 1987, 516-524
[29]Current waveform distortion in power factor corrector circuits employing discontinuous mode boost converters, K.H. Liu and Y.L.Lin ,PESC 1989,825-829


【文件名】:06122@52RD_开关电源供电系统设计.rar
【格 式】:rar
【大 小】:51K
【简 介】:
【目 录】:


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册

×
发表于 2007-7-16 14:44:43 | 显示全部楼层
好东东![em14]
点评回复

使用道具 举报

发表于 2007-7-23 21:05:46 | 显示全部楼层
是不是真的啊
点评回复

使用道具 举报

发表于 2007-8-18 23:09:22 | 显示全部楼层
好东西,可惜没钱,
点评回复

使用道具 举报

发表于 2007-8-20 13:03:28 | 显示全部楼层
文档也放到附件里面吧 [em01]
点评回复

使用道具 举报

发表于 2008-1-15 23:22:37 | 显示全部楼层
楼主的论文资料呢?怎么就一个DDB图呀
点评回复

使用道具 举报

发表于 2008-1-16 10:02:17 | 显示全部楼层
哈哈,上当的感觉.花了币,看不到东东.
点评回复

使用道具 举报

发表于 2008-1-16 17:30:19 | 显示全部楼层
上当。里面没有原理图,也没有论文
点评回复

使用道具 举报

发表于 2008-2-29 21:35:08 | 显示全部楼层
穷啊。[em03]
点评回复

使用道具 举报

发表于 2008-3-4 22:39:04 | 显示全部楼层
Shit!
点评回复

使用道具 举报

发表于 2008-3-18 11:41:33 | 显示全部楼层
怎么这样?
不厚道
点评回复

使用道具 举报

发表于 2008-3-28 18:43:36 | 显示全部楼层
图都看不到一个呀,上传得不成功。
点评回复

使用道具 举报

发表于 2008-3-30 12:52:40 | 显示全部楼层
很不错的资料 但是我的钱不够[em06]
点评回复

使用道具 举报

发表于 2008-5-17 21:18:47 | 显示全部楼层
支持 ,谢谢楼主!
点评回复

使用道具 举报

发表于 2008-5-19 22:53:58 | 显示全部楼层
jin-qiao,做人要厚道啊!还我Q币!
点评回复

使用道具 举报

发表于 2008-5-20 09:25:05 | 显示全部楼层
希望有用;
点评回复

使用道具 举报

发表于 2008-6-18 00:11:06 | 显示全部楼层
评价这么差,还是不买吧,本来想买的
点评回复

使用道具 举报

发表于 2008-7-28 13:51:59 | 显示全部楼层
是不是太老了
点评回复

使用道具 举报

发表于 2008-8-3 12:35:44 | 显示全部楼层
這么長啊!好東東,不過太……貴了[em03][em03]
点评回复

使用道具 举报

发表于 2008-8-4 17:08:36 | 显示全部楼层
[em02]
点评回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies

本版积分规则

Archiver|手机版|小黑屋|52RD我爱研发网 ( 沪ICP备2022007804号-2 )

GMT+8, 2025-1-24 08:53 , Processed in 0.062757 second(s), 18 queries , Gzip On.

Powered by Discuz! X3.5

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表