找回密码
 注册
搜索
查看: 1371|回复: 5

[讨论] 耳朵聆听声音上所受到的物理定律和效应干扰

[复制链接]
发表于 2006-5-9 14:30:00 | 显示全部楼层 |阅读模式
耳朵聆听声音上所受到的物理定律和效应干扰

这些都是我收集到的资料,大家读了后对聆听音响讨论时,便会知道那些现象涉及到那些物理定律和效应干扰。

声音的频率范围,是聆听音调的最重要的主观感觉。像响度一样,音调也是一种听觉的主观心理恒量重标准,是听觉判断声音调门高低的属性的准绳。心理学上,音调和音乐中音阶之间的区别:音调是纯音的音调,音乐是复合声音的音调。复合声音的音调不单纯是频率解析,同时也经过聆听者听觉神经系统的认知,受到听音经验和学习的影响。

时间域的主观感觉

声音延续的时间长度超过大约300 µs(毫秒),声音的时间长度增减,便对听觉的阀值变化不起作用。听觉对于音调的感受与声音的时间长短有关,当声音持续的时间很短时,听不出音调来,只是听到“咔啦”一声。声音的持续时间加长,才能感觉到音调的感受,声音持续数十毫秒以上时,感觉的音调才能稳定。时间域的另一个主观感觉特性是回声(echo)。
  
人耳用双耳聆听听声音,比较用单耳聆听听声音具有明显的优势,灵敏度高、听阀低、对声源具有方向感、有比较强的抗干扰能力。在立体声条件下,音箱和用立体声耳机聆听声音,所获得的空间感是不相同的,前者听到的声音似乎位于周围环境中,而后者听到的声音位置在头的内部。为了方便区别这两种空间感,将前者称为「定向性空间感」,后者称为「定位性空间感」。
  
听觉的韦伯定律 Webber’s Law
  
韦伯定律表明了人耳聆听声音的主观感受量,是与客观刺激量的对数成正比关系。当声音较小,增大声波振幅时,人耳的主观感受音量增大量比较大;当声音强度比较大,增大相同的声波振幅时,人耳主观感受音量的增大量比较小。
  
根据人耳的上述听音特性,在设计音量控制电路时,要求采用对数型电位器作为音量控制器,这样均匀旋转电位器转柄时,音量才会是线性地增大的。
  
听觉的欧姆定律Ohm’s Law
  
著名科学家欧姆发现了电学中的欧姆定律,同时他还发现了人耳听觉上的欧姆定律,这一定律揭示:人耳的听觉只与声音中与各个组成的分音的频率和强度有关,而与各分音之间的相位无关。根据这一定律,音响系统中的记录、重放等过程的控制,可以不去考虑复杂声音中各个组成的分音的相位关系。
  
人耳是一个频率分析仪,可以将复音中的各谐音分开,人耳对频率的分辨灵敏度很高,在这一点上人耳比眼睛的分辨度高,人眼无法看出白光中的各种彩色光分量。
  
掩蔽效应 Shading Effect
  
环境中的其它声音,会使聆听者对某一个声音的听力降低,这称之为掩蔽(shading)。当一个声音的强度远比另一个声音大,当大到一定程度而这两个声音同时存在时,人们只能听到响的那个声音存在,而觉察不到另一个声音存在。掩蔽量与掩蔽声的声压有关,掩蔽声的声压级增加,掩蔽量随之增大。另外,低频声的掩蔽范围大于高频声的掩蔽范围。
  
人耳的这一听觉特性,给设计降低噪声电路噪音提供了重要启发。磁带放音中的听体会,当音乐节目在连续变化且声音较大时,我们不会听到磁带的本底噪声,但当音乐节目结束(空白段磁带)时,便能感觉到磁带的“咝……”噪声存在。
  
为了降低噪声对节目声音的影响,提出了信噪比(SN)的概念,即要求信号强度比噪声强度足够的大,这样聆听声音时便不会觉得有噪声的存在。这些降噪系统就是利用掩蔽效应的原理设计而成的。
  
双耳效应 Bi-aural Effect
  
双耳效应的基本原理是这样:如果声音来自聆听者的正前方,这时由于声源传送到左、右二耳的距离相等,声波到达左、右耳的时间差(相位差)、音色差等都是零,聆听者的感受出声音来自聆听者的正前方,没有偏向某一侧。声音强弱不同时,却可感受出声源与聆听者之间的距离。
  
哈斯效应 Haa’s Effect
  
哈斯的试验证明:在两个声源同时产生了声音时,根据一个声源与另一个声源的延时量不同时,双耳听音的感受是不同的,可以分成以下三种情况来说明:
  
(1)两个声源中一个声源与另一个声源的延时量在5 – 30 µs以内时,就好像两个声源合二为一,听音者只能感觉到超前一个声源的存在和方向,感觉不到另一个声源的存在。
  
(2)若一个声源延时另一个声源30 – 50 µs,已能感觉到两个声源的存在,但方向仍由前导所定。
  
(3)若一个声源延时量大于另一个声源为50 µs时,则能感觉到两个声源的同时存在,方向由各个声源来确定,滞后声为清晰的回声。
  
哈斯效应是立体声系统定向的基础之一。
  
德•波埃效应 Doppler Effect
  
德•波埃效应是立体声系统定向的另一基础。德•波埃效应的实验是:放置左、右声道两只音箱,听音者在两只音箱对称线上听音,给两只音箱输入不同的信号,可以得到以下几个定论:
  
(1)如果给两只音箱输入相同的信号,即强度级差ΔL=0,时间差Δt=0,此时只感觉到一个声音,且来自两只音箱的对称线上。
  
(2)如果两只音箱的强度级差ΔL不为0,此时听音感觉声音偏向较响的一只音箱,如果强度级差ΔL大于等于15 dB,此时感觉声音完全来自较响的那一只音箱。
  
(3)如果强度级差ΔL=0,但两只音箱的时间差Δt不为0,此时感觉声音向先到达的那只音箱方向移动。如果时间差Δt大于等于3 µs时,感觉声音完全来自先到达的那只音箱方向。
  
劳氏效应
  
劳氏效应是一种立体声范围的心理声学效应。劳氏效应揭示:如果将延迟后的信号再反相叠加在直达信号上,会产生一种明显的空间感,声音好像来自四面八方,听音者仿佛置身于乐队之中。
  
匙孔效应 Key hole effect
  
单声道录放系统使用一只话筒录音,信号录在一条轨迹上,放音时使用一路放大器和一只扬声器,所以重放的声源是一个点声源,如同聆听者通过门上的匙孔,聆听室内的交响乐,这便是所谓的匙孔效应。
  
浴室效应 Bathroom effect
  
身临浴室时有一个切身感受,浴室内发出的声音,混响时间过长且过量,这种现象在电声技术的音质描述中称为浴室效应。当低、中频某段夸张,有共振、频率响应不平坦、300 Hz提升过量时,会出现浴室效应。
  
多普勒效应 Doppler effect
  
多普勒效应揭示移动声音的有关听音特性:当声源与听音者之间存在相对运动时,会感觉某一频率所确定的声音,其音调发生了改变,当声源向听音者接近时,是频率稍高的音调,当声源离去时,是频率稍降低的音调。这一频率的变化量称为多普勒频移。移近的声源在距听音者同样距离时,比不移动时产生的强度大,而移开的声源产生的强度要小些,通常声源向移动方向集中。
  
李开试验
  
李开试验证明:两个声源的相位相反时,声像可以超出两个声源以外,甚至跳到听音身后。
  
李开试验还提示,只要适当控制两声源(左、右声道扬声器)的强度、相位,就可以获得一个范围广阔(角度、深度)的声像移动场。[br]<p align=right><font color=red>+5 RD币</font></p>
发表于 2006-5-10 17:47:00 | 显示全部楼层
感謝提供資料,在此提出小小更正:
德&#8226;波埃效应 應該是 D.Poher effect ,非 Doppler Effect
謝謝!
点评回复

使用道具 举报

发表于 2006-5-10 17:58:00 | 显示全部楼层
<P>關於 德&#8226;波埃效应<FONT color=#ffffff>[52RD.com]</FONT>
  <FONT color=#ffffff>[52RD.com]</FONT>
(3).....如果时间差Δt大于等于<FONT color=#ee6911>3 &micro;s</FONT>时,...... <FONT color=#000000>--&gt; </FONT><FONT color=#000000>應為3ms</FONT></P><P>謝謝!</P>[br]<p align=right><font color=red>+3 RD币</font></p>
点评回复

使用道具 举报

 楼主| 发表于 2006-5-11 15:53:00 | 显示全部楼层
多谢大牛更正
点评回复

使用道具 举报

发表于 2006-5-17 12:08:00 | 显示全部楼层
長見識。多謝!
点评回复

使用道具 举报

发表于 2006-5-19 14:47:00 | 显示全部楼层
<P>写的挺好!</P>
点评回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies

本版积分规则

Archiver|手机版|小黑屋|52RD我爱研发网 ( 沪ICP备2022007804号-2 )

GMT+8, 2024-11-20 10:33 , Processed in 0.047038 second(s), 16 queries , Gzip On.

Powered by Discuz! X3.5

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表