|
以下是串口接收程序,有几点不明白:
1.
parameter Baud8 = Baud*8;
parameter Baud8GeneratorAccWidth = 16;
wire [Baud8GeneratorAccWidth:0] Baud8GeneratorInc = ((Baud8<<(Baud8GeneratorAccWidth-7))+(ClkFrequency>>8))/(ClkFrequency>>7);
reg [Baud8GeneratorAccWidth:0] Baud8GeneratorAcc;
always @(posedge clk) Baud8GeneratorAcc <= Baud8GeneratorAcc[Baud8GeneratorAccWidth-1:0] + Baud8GeneratorInc;
wire Baud8Tick = Baud8GeneratorAcc[Baud8GeneratorAccWidth];
这段代码的作用是什么?为什么要定义这个?
2.next_bit是不是在wire next_bit = (bit_spacing==4'd10);这句之后就一直保持4'd10不变?
3.
always @(posedge clk)
if(Baud8Tick)
begin
if( RxD_sync_inv[1] && RxD_cnt_inv!=2'b11)
RxD_cnt_inv <= RxD_cnt_inv + 2'h1;
else if(~RxD_sync_inv[1] && RxD_cnt_inv!=2'b00)
RxD_cnt_inv <= RxD_cnt_inv - 2'h1;
if(RxD_cnt_inv==2'b00)
RxD_bit_inv <= 1'b0;
else if(RxD_cnt_inv==2'b11)
RxD_bit_inv <= 1'b1;
end
这部分语句的作用是什么?
以下是整个程序:
// RS-232 RX module
// (c) fpga4fun.com KNJN LLC - 2003, 2004, 2005, 2006
module receive_test(clk, RxD, RxD_data );
input clk, RxD; // 系统时钟, 接收信号
output [7:0] RxD_data; // 接收的数据,进入后级的 RAM 数据总线
parameter ClkFrequency = 50_000_000; // 25MHz
parameter Baud = 9600;
// Baud generator (we use 8 times oversampling)
parameter Baud8 = Baud*8;
parameter Baud8GeneratorAccWidth = 16;
wire [Baud8GeneratorAccWidth:0] Baud8GeneratorInc = ((Baud8<<(Baud8GeneratorAccWidth-7))+(ClkFrequency>>8))/(ClkFrequency>>7);
reg [Baud8GeneratorAccWidth:0] Baud8GeneratorAcc;
always @(posedge clk) Baud8GeneratorAcc <= Baud8GeneratorAcc[Baud8GeneratorAccWidth-1:0] + Baud8GeneratorInc;
wire Baud8Tick = Baud8GeneratorAcc[Baud8GeneratorAccWidth];
////////////////////////////
reg [1:0] RxD_sync_inv;
always @(posedge clk) if(Baud8Tick) RxD_sync_inv <= {RxD_sync_inv[0], ~RxD};
// we invert RxD, so that the idle becomes "0",
// to prevent a phantom character to be received at startup
reg [1:0] RxD_cnt_inv;
reg RxD_bit_inv;
always @(posedge clk)
if(Baud8Tick)
begin
if( RxD_sync_inv[1] && RxD_cnt_inv!=2'b11)
RxD_cnt_inv <= RxD_cnt_inv + 2'h1;
else if(~RxD_sync_inv[1] && RxD_cnt_inv!=2'b00)
RxD_cnt_inv <= RxD_cnt_inv - 2'h1;
if(RxD_cnt_inv==2'b00)
RxD_bit_inv <= 1'b0;
else if(RxD_cnt_inv==2'b11)
RxD_bit_inv <= 1'b1;
end
reg [3:0] state;
reg [3:0] bit_spacing;
// "next_bit" controls when the data sampling occurs
// depending on how noisy the RxD is, different values might work better
// with a clean connection, values from 8 to 11 work
wire next_bit = (bit_spacing==4'd10);
always @(posedge clk)
if(state==0)
bit_spacing <= 4'b0000;
else
if(Baud8Tick)
bit_spacing <= {bit_spacing[2:0] + 4'b0001} | {bit_spacing[3], 3'b000};
always @(posedge clk)
if(Baud8Tick)
case(state)
4'b0000:
if(RxD_bit_inv)
begin
state <= 4'b1000; // start bit found?
end
4'b1000: if(next_bit) state <= 4'b1001; // bit 0
4'b1001: if(next_bit) state <= 4'b1010; // bit 1
4'b1010: if(next_bit) state <= 4'b1011; // bit 2
4'b1011: if(next_bit) state <= 4'b1100; // bit 3
4'b1100: if(next_bit) state <= 4'b1101; // bit 4
4'b1101: if(next_bit) state <= 4'b1110; // bit 5
4'b1110: if(next_bit) state <= 4'b1111; // bit 6
4'b1111: if(next_bit) state <= 4'b0001; // bit 7
4'b0001:
if(next_bit)
state <= 4'b0000; // stop bit
default:
begin
state <= 4'b0000;
end
endcase
reg [7:0] RxD_data;
always @(posedge clk)
if(Baud8Tick && next_bit && state[3])
RxD_data <= {~RxD_bit_inv, RxD_data[7:1]};
endmodule |
|