找回密码
 注册
搜索
查看: 1576|回复: 38

[综合资料] 射频电路应用设计的关键性课题(免费)

[复制链接]
发表于 2008-12-29 22:53:39 | 显示全部楼层 |阅读模式
(Lectures)
                               


                       RF/RFIC Circuit Design


                                Richard Chi-Hsi Li


                                       李 缉 熙


         

















                            

                                           2008








Part 1   Design Technologies and  Schemes



Lecture 1    Different Methodology between RF and Digital
                     Circuit Design         1 hour
                (0.17 days)
1.1        Controversy
1.1.1        Impedance Matching
1.1.2        Key Parameter
1.1.3        Circuit Testing and Main Test Equipments
1.2        Differences of Digital and RF Blocks in a Communication System
1.2.1        Impedance
1.2.2        Current drain
1.2.3        Location
1.3        Conclusion
1.4        Notes for  High Speed Digital Circuit Design



Lectue 2    Voltage and Power Transportation         2 hours
        (0.33 days)
2.1        Voltage Delivered from a Source to a Load
2.1.1        General Expression of Voltage Delivered from a Source to a Load
2.1.2        Additional Jitter or Distortion in a Digital Circuit Block
2.2        Power Delivered from a Source to a Load
2.2.1        General Expression of Power Delivered from a Source to a Load
2.2.2        Power Instability
2.2.3        Additional Power Loss
2.2.4        Additional Distortion
2.2.5        Additional Interference
2.3        Impedance Conjugate Matching       
2.3.1        Maximization of Power Transportation
2.3.2        Power Transportation without Phase Shift       
2.3.3        Impedance Matching Network
2.3.4        Necessity of Impedance Matching
2.4        Additional Effects of Impedance Matching
2.4.1        Voltage Pumped Up by Means of Impedance Matching
2.4.2        Power Measurement       
Appendixes       
2A.1        VSWR and Other  Reflection and Transmission Coefficients       
2A.2        Relationships between Power (dBm), Voltage (V), and Power (Watt)       

       
       
Lecture 3    Impedance Matching in Narrow Band Case        4 hours
        (0.67 days)       
3.1        Introduction
3.2        Impedance Matching by Means of Return Loss Adjustment
3.2.1        Return Loss Circles on Smith Chart
3.2.2        Relationship between Return Loss and Impedance Matching
3.2.3        Implementation of an Impedance Matching Network
3.3        Impedance Matching Network Built by One Part
3.3.2        One Part Inserted into Impedance Matching Network in Series
3.3.3        One Part Inserted into Impedance Matching Network in Parallel       
3.4        Impedance Matching Network Built by Two Parts
3.4.1        Regions in the Smith Chart
3.4.2        Value of Parts
3.4.3        Selection of Topology
3.5        Impedance Matching Network Built by Three Parts
3.5.1        “Π” and “T” Types
3.5.2        Recommended Topologies
3.6        Impedance Matching when ZS or ZL is not 50 Ω
3.7        Parts in an Impedance Matching Network
Appendixes
3A.1        Fundamentals of the Smith Chart
3A.2        Formula for a Two Parts Impedance Matching Network
3A.3        Topology Restrictions of the Two Parts Impedance Matching Network
3A.4        Topology Restrictions of the Three Parts Impedance Matching Network
3A.5        Conversion between  “Π” and “T” type Matching Networks
3A.6        Possible “Π” and “T” Impedance Matching Networks



Lecture 4   Impedance Matching in Wide Band Case        3 hours
        (0.5 days)       
4.1        Appearance of Narrow and Wide Band Return Loss on Smith Chart  
4.2        Impedance Variation due to Insertion of One Part per Arm
         or per Branch
4.2.1        An Inductor Inserted into Impedance Matching Network in Series
4.2.2        A Capacitor Inserted into Impedance Matching Network in Series
4.2.3        An Inductor Inserted into Impedance Matching Network in Parallel
4.2.4        A Capacitor Inserted into Impedance Matching Network in Parallel
4.3        Impedance Variation due to Insertion of Two Parts per Arm
               or per Branch
4.3.1        Two Parts Connected in Series to Form One Arm
4.3.2        Two Parts Connected in Parallel to Form One Branch
4.4        Impedance Matching in IQ Modulator Design for UWB System
        in UWB System
4.4.1        Gilbert Cell in IQ Modulator
4.4.2        Impedances of  Gilbert Cell
4.4.3        Impedance Matching for LO, RF and IF Ports Ignoring Bandwidth
4.4.4        Wide Bandwidth Required in UWB(Ultra Wide Band) System
4.4.5        Basic Idea to Expand the Bandwidth
4.4.6        Example#1: Impedance Matching in  IQ Modulator Design         
        for Group#1 in UWB System
4.4.7        Example#2: Impedance Matching in  IQ Modulator Design
        for Group#3+Group#6 in UWB System
4.5        Discussion of Wide-band Impedance Matching Network
4.5.1        Impedance Matching for Gate of MOSFET device
4.5.2        Impedance Matching for Drain of MOSFET device



Lecture 5         Impedance and Gain of a Raw Device        2 hours
        (0.33 days)       
5.1        Introduction
5.2        Miller Effect
5.3        Small Signal Model of Bipolar Transistor
5.4        Bipolar Transistor with CE (Common Emitter) Configuration
5.4.1        Open-circuited Voltage Gain Av,CE of a CE Device
5.4.2        Short-circuited Current Gain βCE and Frequency Response of a CE Device
5.4.3        Primary Input and Output Impedances of a CE Device
5.4.4        Miller Effect on a CE device
5.4.5        Emitter Degeneration
5.5        Bipolar Transistor with CB (Common Base) Configuration
5.5.1.        Open-circuited Voltage Gain Av,CB  of a CB Device
5.5.2.        Short-circuited Current Gain βCB  and Frequency Response of a CB Device
5.5.3.        Input and Output Impedances of a CB Device
5.6        Bipolar Transistor with CC (Common Collector) Configuration
5.6.1        Open-circuited Voltage Gain Av,CC  of a CC Device
5.6.2        Short-circuited Current Gain βCC  and Frequency Response of a CC Device
5.6.3        Input and Output Impedances of a CC Device
5.7        Small Signal Model of MOSFET Transistor
5.8        Similarity between Bipolar and MOSFET Transistor
5.8.1        Simplified Model of CS device
5.8.2        Simplified Model of CG device
5.8.3        Simplified Model of CD device
5.9        MOSFET Transistor with CS (Common Source) Configuration
5.9.1        Open-circuited Voltage Gain Av,CS  of a CS Device
5.9.2        Short-circuited Current Gain βCS  and Frequency Response of a CS Device
5.9.3        Input and Output Impedances of a CS Device
5.9.4        Source Degeneration
5.10        MOSFET Transistor with CG (Common Gate) Configuration
5.10.1        Open-circuited Voltage Gain Av,CG of a CG Device
5.10.2        Short-circuited Current Gain βCG  and Frequency Response of a CG Device  
5.10.3        Input and Output Impedances of a CG Device

5.11        MOSFET Transistor with CD (Common Drain) Configuration
5.11.1        Open-circuited Voltage Gain Av,CD  of a CD Device
5.11.2        Short-circuited Current Gain βCD  and Frequency Response of a CD Device
5.11.3        Input and Output Impedances of a CD Device

5.12        Comparison of Bipolar and MOSFET Transistor in Various
        Configurations



Lecture 6    Impedance Measurement        1 hours
        (0.17 days)       
6.1        Introduction
6.2        Scale and Vector Voltage Measurement  
6.2.1        Voltage Measurement by Oscilloscope
6.2.2        Voltage Measurement by Vector-Voltmeter
6.3        Direct Impedance Measurement by Network Analyzer
6.3.1        Direction of Impedance Measurement
6.3.2        Advantages of Measuring S Parameters
6.3.3        Theoretical Background of Impedance Measurement by S Parameters
6.3.4        S Parameter Measurement by Vector-Voltmeter
6.3.5        Calibration of Network Analyzer
6.4        Alternative Impedance Measurement by Network Analyzer
6.4.1        Accuracy of Smith Chart
6.4.2        Low and High Impedance Measurement
6.5        Impedance measurement by Assistance of Circulator
Appendixes
6A.1        Relationship Between the Impedance in Series and in Parallel



Lecture 7   Grounding        4 hours
        (0.67 days)       
7.1        Implications of Grounding
7.2        Possible Grounding Problems Hidden in a Schematic  
7.3        Imperfect or Inappropriate Grounding Examples
7.3.1        Inappropriate Selection of Bypass Capacitor
7.3.2        Imperfect Grounding
7.3.3        Improper Connection
7.4        “Zero” Capacitor
7.4.1        What is a “Zero” Capacitor?
7.4.2        Selection of  the “Zero” Capacitor
7.4.3        Bandwidth of the “Zero” Capacitor
7.4.4        Combined Effect of Multiple “Zero” Capacitors
7.4.5        Chip Inductor is a Good Assistant
7.4.6        “Zero” Capacitor in RFIC Design
7.5        Quarter Wavelength of Micro Strip Line
7.5.1        A Runner is a Part in RF Circuitry
7.5.2        Why the Quarter Wavelength is so Important?
7.5.3        The Magic of the Open-circuited Quarter-Wavelength Micro Strip Line
7.5.4        Testing for Width of a Micro Strip Line with a Specific
        Characteristic Impedance
7.5.5        Testing for the Quarter Wavelength       
Appendixes       
7A.1        Characterizing a Chip Capacitor and Chip Inductor by Means of S21 Testing



Lecture 8          Equipotentiality and Current Coupling
        on the Ground Surface        2 hours
        (0.33 days)       
8.1        Equipotentiality on the Grounded Surface
8.1.1        Equipotentiality on the Grounded Surface of a RF cable
8.1.2        Equipotentiality on the Grounded Surface of a PCB
8.1.3        Possible Problems of a Large Test PCB
8.1.4        Coercing Grounding
8.1.5        Testing for Equipotentiality

8.2        Forward and Return Current Coupling
8.3.1           “Indifferent Assumption” and the “Great Ignore”
8.3.2           Reduction of Current Coupling on a PCB
8.3.3           Reduction of Current Coupling in a IC Die
8.3.4           Reduction of Current Coupling between Multiple RF Blocks
8.3.5           A Plausible System Assembly

8.3        PCB and IC Chip with Multi Metallic Layers
Appendixes               
8A.1        Primary Considerations of a PCB



Lecture 9     RFIC (Radio Frequency Integrated Circuit) and
        SOC (System on Chip)        4 hours
        (0.67 days)       
9.1        Interference and Isolation
9.1.1        Existence of Interference in Circuitry
9.1.2        Definition and Measurement of Isolation
9.1.3        Main Path of Interference in a RF Module
9.1.4        Main Path of Interference in a IC Die
9.2        Shielding for a RF Module by a Metallic Shielding Box
9.3        Strong Desirability to Develop RFIC
9.4        Interference Going Along IC Substrate Path
9.4.1.        Experimentation
9.4.2.        Trench
9.4.3.        Guard Ring
9.5        Solution for Interference Coming from the Sky
9.6        Common Grounding Rules for RF Module and RFIC Design
9.6.1.        Grounding of Circuit-branches or Blocks in Parallel
9.6.2.        DC Power Supply to Circuit-branches or Blocks in Parallel
9.7        Bottlenecks in RFIC
9.7.1        Low Q Inductor and Possible Solution
9.7.2        “Zero” Capacitors
9.7.3        Bonding Wires
9.8        Prospect of SOC
9.9        What is Next?
Appendixes
9A.1        Notes about RFIC layout
9A.2        Calculation of Quarter Wavelength



Lecture 10    Manufacturability of Product Design        2 hours
        (0.33 days)       
10.1        Introduction
10.2        Implication of 6σ Design
10.2.1         6σ  and Yield Rate
10.2.2         6σ Design for a Circuit Block
10.3        Approaching 6σ Design
10.3.1        By Changing Parts’ 6σ Value
10.3.2        By Replacing a Single Part with Multiple Parts
10.4        Monte Carlo Analysis       
10.4.1        A BPF (Band Pass Filter)
10.4.2        Simulation with Monte Carlo Analysis
10.4.3        Sensitivity of Parts on the Parameter of Performance
Appendixes
10A.1        Fundamentals of Random Process
10A.2        Index Cp, Cpk and Other Parameters Applied in 6σ Design
10A.3        Table of the Normal Distribution







【文件名】:081229@52RD_射频电路应用设计的关键性课题.part1.rar
【格 式】:rar
【大 小】:4000K
【简 介】:
【目 录】:
发表于 2008-12-30 13:10:16 | 显示全部楼层
thanka for your share, you are a good man![em14]
点评回复

使用道具 举报

发表于 2008-12-30 15:06:40 | 显示全部楼层
Thank you very much
点评回复

使用道具 举报

发表于 2008-12-30 23:25:18 | 显示全部楼层
谢谢楼主分享
正好前一段时间听过一节他讲的课
讲得很实用
就是内容粗了点
点评回复

使用道具 举报

发表于 2008-12-31 10:02:58 | 显示全部楼层

射频电路应用设计的关键性课题(免费)

Thank you very much
本文来自:我爱研发网(52RD.com) 详细出处:http://www.52rd.com/bbs/Detail_RD.BBS_146743_26_1_1.html
点评回复

使用道具 举报

发表于 2009-1-10 16:20:57 | 显示全部楼层
Thank you very much[em08]
点评回复

使用道具 举报

发表于 2009-1-13 11:28:09 | 显示全部楼层
[em05]
点评回复

使用道具 举报

发表于 2009-1-13 22:15:06 | 显示全部楼层
免费一定要顶!!!
点评回复

使用道具 举报

发表于 2009-1-14 21:06:04 | 显示全部楼层
支持楼主
点评回复

使用道具 举报

发表于 2009-2-8 21:53:30 | 显示全部楼层
免费一定要顶!!!
[em01][em01][em01][em01]
点评回复

使用道具 举报

发表于 2009-2-13 22:35:38 | 显示全部楼层
顶下,不过这个老头的水平其实也不怎么样  参加过他的培训 [em08]
点评回复

使用道具 举报

发表于 2009-2-18 10:25:43 | 显示全部楼层
我一定要看看什么内容
点评回复

使用道具 举报

发表于 2009-2-18 21:11:19 | 显示全部楼层
谢谢!支持
点评回复

使用道具 举报

发表于 2009-2-19 08:28:32 | 显示全部楼层
dingyige xian
点评回复

使用道具 举报

发表于 2009-3-3 13:18:45 | 显示全部楼层
顶一个!!
谢谢分享[em01]
点评回复

使用道具 举报

发表于 2009-3-13 13:51:53 | 显示全部楼层
顶下,不过这个老头的水平其实也不怎么样  参加过他的培训
点评回复

使用道具 举报

发表于 2009-3-16 00:00:28 | 显示全部楼层
谢谢[em01][em01]
点评回复

使用道具 举报

发表于 2009-3-17 08:45:38 | 显示全部楼层
虽然 我没有听过这位大师的培训,不过还是要顶一下!
点评回复

使用道具 举报

发表于 2009-3-22 17:37:20 | 显示全部楼层
谢谢阿,谢谢免费
点评回复

使用道具 举报

发表于 2009-3-23 20:15:13 | 显示全部楼层
天下人都这么好就好了!好人哪!
点评回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies

本版积分规则

Archiver|手机版|小黑屋|52RD我爱研发网 ( 沪ICP备2022007804号-2 )

GMT+8, 2024-11-19 17:22 , Processed in 0.052938 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.5

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表