找回密码
 注册
搜索
查看: 1334|回复: 6

[资料] High Performance Pipeline AD Converter

[复制链接]
发表于 2006-1-12 19:48:00 | 显示全部楼层 |阅读模式
【文件名】:06112@52RD_High Performance Pipeline AD Converter  .pdf
【格 式】:pdf
【大 小】:1178K
【简 介】:
1
Analog-to-digital converters (ADCs) are key design blocks in modern
microelectronic digital communication systems. With the fast advancement of
CMOS fabrication technology, more and more signal-processing functions are
implemented in the digital domain for a lower cost, lower power consumption,
higher yield, and higher re-configurability. This has recently generated a great
demand for low-power, low-voltage ADCs that can be realized in a mainstream
deep-submicron CMOS technology.
Intended for embedded communication applications, specifications of these
converters emphasize high dynamic range and low spurious spectral performance.
For example, the worst-case blocking specs of some wireless standards, such as
GSM, dictate a conversion linearity of 14-16 bits to avoid losing a weak received
signal due to distortion artifacts. It is nontrivial to achieve this level of linearity in
2
a monolithic environment where post-fabrication component trimming or
calibration is cumbersome to implement for certain applications or/and for cost
and manufacturability reasons.
Another hurdle to achieve full system integration stems from the power
efficiency of the A/D interface circuits supplied by a low voltage dictated by the
gate-oxide reliability of the deeply scaled digital CMOS devices. It has been
observed recently that these interface analog/mixed-signal circuits are gobbling a
larger chunk of the chip area as well as total power consumption; hence it
becomes essential to accomplish an optimized design from both the architecture
and the circuit standpoints. To achieve high linearity, high dynamic range, and
high sampling speed simultaneously under low supply voltages in deepsubmicron
CMOS technology with low power consumption has thus far been
conceived of as extremely challenging.
This thesis addresses these challenges using the pipeline ADC as a
demonstration platform. Specific new design techniques/algorithms include (1) a
power-efficient, capacitor ratio-independent conversion scheme, (2) a pipeline
stage-scaling algorithm, (3) a nested CMOS gain-boosting technique, (4) a ∆Σ
common-mode voltage regulation circuit, (5) an amplifier and comparator sharing
technique, and the use of minimum channel-length, thin oxide transistors with
clock bootstrapping and in-line switch techniques. The prototype design of a 14-
3
bit pipeline ADC fabricated in a 0.18- µm CMOS technology that achieves an over
100-dB spurious-free dynamic range (SFDR) demonstrates the effectiveness of
these techniques.
【目 录】:
iv
List of Figures................................................................................................. vi
List of Tables.................................................................................................. ix
Chapter 1 Introduction................................................................................ 1
1.1 Wireless Communication ............................................................. 1
1.2 Challenges of Broadband Radio................................................... 3
1.3 CMOS Technology Scaling ......................................................... 5
1.4 A/D Interface ................................................................................ 8
1.5 Research Contribution ................................................................ 10
1.6 Thesis Organization.................................................................... 11
Chapter 2 Pipeline Architecture Power Efficiency................................ 14
2.1 Pipeline ADC Architecture ........................................................ 14
2.2 Power Efficiency under Low Supply Voltage ........................... 17
2.2.1 C kT / Noise...................................................................... 17
2.2.2 Power Consumption of Pipeline ADC.............................. 18
2.3 Stage-Scaling Analysis of Pipeline ADC .................................. 20
2.3.1 Cline-Gray Model ............................................................. 21
2.3.2 Parasitic-Loaded Amplifier Model ................................... 22
2.3.3 Stage-Scaling Analysis Revisited ..................................... 25
2.3.4 Summary............................................................................ 28
2.3.4.1 Speed Factor............................................................. 29
2.3.4.2 Taper Factor ............................................................. 30
Chapter 3 Capacitor Error-Averaging.................................................... 35
3.1 Pipeline ADC Error Mechanism................................................ 36
3.2 Capacitor Matching Accuracy.................................................... 38
v
3.3 Precision Conversion Techniques.............................................. 40
3.3.1 Active Capacitor Error-Averaging.................................... 42
3.3.2 Passive Capacitor Error-Averaging – Part I ..................... 44
3.3.3 Passive Capacitor Error-Averaging – Part II.................... 47
3.3.4 Power Efficiency ............................................................... 48
3.3.5 Monte Carlo Simulation.................................................... 49
Appendix
A3.1 MDAC Capacitor Matching.................................................... 52
A3.2 Active CEA.............................................................................. 54
A3.3 Passive CEA (I) ....................................................................... 56
A3.4 Passive CEA (II) ...................................................................... 58
Chapter 4 Prototype Design...................................................................... 62
4.1 Sampling Clock Skew ................................................................ 62
4.2 Amplifier and Sub-ADC Sharing............................................... 64
4.3 Nested CMOS Gain Boosting .................................................... 68
4.4 Discrete-Time Common-Mode Regulation ............................... 69
4.5 Dynamic Comparator ................................................................. 73
4.6 Sampling Switch......................................................................... 74
Appendix
A4.1 Discrete-Time Common-Mode Regulation ............................ 75
Chapter 5 Experimental Results .............................................................. 79
5.1 Static Linearity............................................................................ 80
5.2 Dynamic Linearity...................................................................... 82
5.2.1 SNDR, THD, and SFDR................................................... 82
5.2.2 ADC Performance Sensitivity........................................... 84
Chapter 6 Conclusion ................................................................................ 87
vi
List of Figures
Figure 1.1 Ericsson single-chip 0.18- µm CMOS Bluetooth radio
(2001). .....................................................................................1
Figure 1.2 Scaling trend of silicon CMOS according to the 2003
edition international technology roadmap of
semiconductor (ITRS).3 ...........................................................6
Figure 1.3 (a) Simplified block diagram of a direct-conversion RF
receiver. Shaded blocks are off-chip components. (b)
Simplified block diagram of a double-conversion
receiver. (c) Signal spectrum at point A (after antenna)
and B (before ADC). ...............................................................9
Figure 2.1 Block diagram of a pipeline A/D converter...........................15
Figure 2.2 Circuit diagram of the 1.5-b/s MDAC. ..................................16
Figure 2.3 Noise model of MDAC including parasitic loading
effects. ...................................................................................22
Figure 2.4 Evaluation of ) , , ( η γ n g versus the scaling factor γ...............29
Figure 2.5 Evaluation of ) , , ( η γ n g versus the speed factor η. ...............30
Figure 2.6 Evaluation of ) , , ( η γ n g versus the taper factor x. .................31
Figure 2.7 Evaluation of opt γ versus the stage resolution n....................32
Figure 3.1 Voltage transfer characteristic of a 1.5-b/s residue gain
stage. The solid curve shows the ideal transfer function
and the dashed one exhibits static nonlinearity due to
analog circuit non-idealities. .................................................37
Figure 3.2 Circuit diagram of an n-b/s pipeline ADC and its
residue transfer characteristic. (a) Sampling mode. (b)
vii
Amplification mode...............................................................38
Figure 3.3 Capacitor matching accuracy versus stage resolution
for a 14-bit pipeline ADC. A half LSB maximum DNL
and INL error is assumed. .....................................................40
Figure 3.4 Circuit diagram of the active CEA technique. The stage
operates on a three-phase clock. φ1 is the sampling
phase (not shown). φ2 and φ3 are the amplification
phases shown in (a) and (b), respectively..............................43
Figure 3.5 Voltage waveforms of the active CEA gain stage of
Figure 3.4...............................................................................44
Figure 3.6 Circuit diagram of the passive CEA technique (I). C1
and C2 are the sampling capacitors of the current
pipeline stage, while C3 and C4 are from the trailing
stage.......................................................................................45
Figure 3.7 Voltage waveforms of the passive CEA gain stages of
Figure 3.6 and Figure 3.8. .....................................................46
Figure 3.8 Circuit diagram of the passive CEA technique (II).
Here C3 and C4 are also the sampling capacitors from
the trailing stage. ...................................................................47
Figure 3.9 Results of the Monte Carlo yield simulation. 14-bit
INL and DNL are achieved with a 6-bit capacitor
matching accuracy (3 σ). Amplifier gain is assumed to
be large (100 dB). ..................................................................51
Figure 4.1 Sampling clock skew in the front-end pipeline stage. ...........62
Figure 4.2 Block diagram of the 14-b pipeline ADC. .............................64
Figure 4.3 Potential summing node crosstalk through the parasitic
capacitance of off switches....................................................65
viii
Figure 4.4 (a) Timing diagram. (b) Summing node crosstalk path
during the falling edge of φ1. ................................................65
Figure 4.5 (a) Modified timing diagram. (b) Dummy switches. .............66
Figure 4.6 Nested CMOS gain-boosted amplifier...................................68
Figure 4.7 (a) ∆Σ common-mode regulation circuit. (b) Timing
diagram. .................................................................................70
Figure 4.8 (a) Discrete-time integrator with look-ahead capacitor
CA. (b) Averaging and differencing amplifier. (c)
Common-mode feedback and feedforward connections
of the six pipeline stages........................................................71
Figure 4.9 Pole-zero and frequency response plots of the CMFB
loop. .......................................................................................73
Figure 4.10 (a) Dynamic comparator. (b) Timing diagram. ...................74
Figure 4.11 (a) Integrator in φA (sampling). (b) Integrator in φB
(integration). (c) Timing diagram. .......................................75
Figure 5.1 Die photo of the prototype 14-b pipeline ADC. ....................79
Figure 5.2 Measured DNL and INL (fs = 12 MS/s, fin = 1 MHz)............80
Figure 5.3 Measured ADC performance versus input signal level.
(a) fs = 12 MS/s, fin = 1.01 MHz. (b) fs = 12 MS/s, fin
= 5.47 MHz............................................................................81
Figure 5.4 FFT spectrum at fin = (a) 1 MHz, (b) 5 MHz, and (c) 40
MHz.......................................................................................83
Figure 5.5 Measured dynamic performance............................................84
Figure 5.6 Measured performance versus Vdd. ........................................84
Figure 5.7 Measured performance versus Vcm.........................................85
Figure 6.1 Comparison of this design (square) and previously
published high-resolution ADCs (diamonds)........................88


发表于 2006-2-15 11:06:00 | 显示全部楼层
为什么我买了,却下载不了?
点评回复

使用道具 举报

发表于 2006-2-16 14:22:00 | 显示全部楼层
<P>出现如下错误信息:</P><P>
</P><TABLE 75%" cellSpacing=1 cellPadding=3 align=center><TR align=middle><TH width="100%" colSpan=2 height=25>研发论坛-Analog/RF IC交流区-查看文件错误信息</TD> </TR><TR><TD class=tablebody1 width="100%" colSpan=2>   <B>您在"<FONT color=#ff0000>查看文件</FONT>"的时候发生错误,共有1项,下面是错误的详细信息</B></TD></TR><TR><TD class=tablebody1 width="100%" colSpan=2><LI>您查找的数据暂不存在! </LI></TD></TR><TR><TD class=tablebody1 width="100%" colSpan=2><LI>请仔细阅读论坛帮助文件,确保您有相应的操作权限。 </LI></TD></TR><TR><TD class=tablebody2 vAlign=center align=middle colSpan=2><a><FONT color=#333366>&lt;&lt; 返回上一页</FONT></A> </TD></TR></TABLE>
点评回复

使用道具 举报

发表于 2006-2-17 18:12:00 | 显示全部楼层
<P>下载时出现错误信息: 您查找的数据暂不存在!</P><P>请beda 尽快解决, thanks!</P>
点评回复

使用道具 举报

发表于 2006-3-28 10:51:00 | 显示全部楼层
<P>不错的资料,刚好需要,麻烦楼主再贴一次好吗,或发至<a href="mailtshadow1983@56.com" target="_blank" >shadow1983@56.com</A>,谢谢</P>
点评回复

使用道具 举报

发表于 2006-5-19 15:40:00 | 显示全部楼层
beta尽快解决文件不能打开的问题,我可是花了3RD币啊,心痛啦!
点评回复

使用道具 举报

发表于 2006-6-6 21:29:00 | 显示全部楼层
<P>没有钱啊 </P>
点评回复

使用道具 举报

高级模式
B Color Image Link Quote Code Smilies

本版积分规则

Archiver|手机版|小黑屋|52RD我爱研发网 ( 沪ICP备2022007804号-2 )

GMT+8, 2025-1-22 20:57 , Processed in 0.054771 second(s), 17 queries , Gzip On.

Powered by Discuz! X3.5

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表